Commit 5f296bbe authored by Chen Chen's avatar Chen Chen Committed by A. Unique TensorFlower
Browse files

Add a run_classifier.py in albert folder.

PiperOrigin-RevId: 295202644
parent 730035d6
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""ALBERT classification finetuning runner in tf2.x."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
from absl import app
from absl import flags
import tensorflow as tf
from official.nlp.albert import configs as albert_configs
from official.nlp.bert import run_classifier as run_classifier_bert
from official.utils.misc import distribution_utils
FLAGS = flags.FLAGS
def main(_):
# Users should always run this script under TF 2.x
assert tf.version.VERSION.startswith('2.')
with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
input_meta_data = json.loads(reader.read().decode('utf-8'))
if not FLAGS.model_dir:
FLAGS.model_dir = '/tmp/bert20/'
strategy = distribution_utils.get_distribution_strategy(
distribution_strategy=FLAGS.distribution_strategy,
num_gpus=FLAGS.num_gpus,
tpu_address=FLAGS.tpu)
max_seq_length = input_meta_data['max_seq_length']
train_input_fn = run_classifier_bert.get_dataset_fn(
FLAGS.train_data_path,
max_seq_length,
FLAGS.train_batch_size,
is_training=True)
eval_input_fn = run_classifier_bert.get_dataset_fn(
FLAGS.eval_data_path,
max_seq_length,
FLAGS.eval_batch_size,
is_training=False)
albert_config = albert_configs.AlbertConfig.from_json_file(
FLAGS.bert_config_file)
run_classifier_bert.run_bert(strategy, input_meta_data, albert_config,
train_input_fn, eval_input_fn)
if __name__ == '__main__':
flags.mark_flag_as_required('bert_config_file')
flags.mark_flag_as_required('input_meta_data_path')
flags.mark_flag_as_required('model_dir')
app.run(main)
......@@ -28,7 +28,6 @@ import tensorflow as tf
from official.modeling import model_training_utils
from official.nlp import optimization
from official.nlp.albert import configs as albert_configs
from official.nlp.bert import bert_models
from official.nlp.bert import common_flags
from official.nlp.bert import configs as bert_configs
......@@ -285,22 +284,17 @@ def export_classifier(model_export_path, input_meta_data,
def run_bert(strategy,
input_meta_data,
model_config,
train_input_fn=None,
eval_input_fn=None):
"""Run BERT training."""
if FLAGS.model_type == 'bert':
bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)
else:
assert FLAGS.model_type == 'albert'
bert_config = albert_configs.AlbertConfig.from_json_file(
FLAGS.bert_config_file)
if FLAGS.mode == 'export_only':
# As Keras ModelCheckpoint callback used with Keras compile/fit() API
# internally uses model.save_weights() to save checkpoints, we must
# use model.load_weights() when Keras compile/fit() is used.
export_classifier(FLAGS.model_export_path, input_meta_data,
FLAGS.use_keras_compile_fit,
bert_config, FLAGS.model_dir)
model_config, FLAGS.model_dir)
return
if FLAGS.mode != 'train_and_eval':
......@@ -320,7 +314,7 @@ def run_bert(strategy,
trained_model = run_bert_classifier(
strategy,
bert_config,
model_config,
input_meta_data,
FLAGS.model_dir,
epochs,
......@@ -372,7 +366,9 @@ def main(_):
FLAGS.eval_batch_size,
is_training=False)
run_bert(strategy, input_meta_data, train_input_fn, eval_input_fn)
bert_config = bert_configs.BertConfig.from_json_file(FLAGS.bert_config_file)
run_bert(strategy, input_meta_data, bert_config, train_input_fn,
eval_input_fn)
if __name__ == '__main__':
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment