Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
5e5e6f6e
Commit
5e5e6f6e
authored
Apr 22, 2022
by
A. Unique TensorFlower
Browse files
Internal change
PiperOrigin-RevId: 443735362
parent
14c32065
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
6 additions
and
4 deletions
+6
-4
official/vision/utils/object_detection/balanced_positive_negative_sampler.py
...ls/object_detection/balanced_positive_negative_sampler.py
+6
-4
No files found.
official/vision/utils/object_detection/balanced_positive_negative_sampler.py
View file @
5e5e6f6e
...
...
@@ -77,8 +77,8 @@ class BalancedPositiveNegativeSampler(minibatch_sampler.MinibatchSampler):
tf
.
zeros
(
input_length
,
tf
.
int32
))
num_sampled_pos
=
tf
.
reduce_sum
(
input_tensor
=
tf
.
cast
(
valid_positive_index
,
tf
.
int32
))
max_num_positive_samples
=
tf
.
c
onstan
t
(
in
t
(
sample_size
*
self
.
_positive_fraction
)
,
tf
.
int32
)
max_num_positive_samples
=
tf
.
c
as
t
(
tf
.
cas
t
(
sample_size
,
tf
.
float32
)
*
self
.
_positive_fraction
,
tf
.
int32
)
num_positive_samples
=
tf
.
minimum
(
max_num_positive_samples
,
num_sampled_pos
)
num_negative_samples
=
tf
.
constant
(
sample_size
,
tf
.
int32
)
-
num_positive_samples
...
...
@@ -219,7 +219,7 @@ class BalancedPositiveNegativeSampler(minibatch_sampler.MinibatchSampler):
indicator: boolean tensor of shape [N] whose True entries can be sampled.
batch_size: desired batch size. If None, keeps all positive samples and
randomly selects negative samples so that the positive sample fraction
matches self._positive_fraction. It cannot be None i
s
is_static is True.
matches self._positive_fraction. It cannot be None i
f
is_static is True.
labels: boolean tensor of shape [N] denoting positive(=True) and negative
(=False) examples.
scope: name scope.
...
...
@@ -259,7 +259,9 @@ class BalancedPositiveNegativeSampler(minibatch_sampler.MinibatchSampler):
max_num_pos
=
tf
.
reduce_sum
(
input_tensor
=
tf
.
cast
(
positive_idx
,
dtype
=
tf
.
int32
))
else
:
max_num_pos
=
int
(
self
.
_positive_fraction
*
batch_size
)
max_num_pos
=
tf
.
cast
(
self
.
_positive_fraction
*
tf
.
cast
(
batch_size
,
tf
.
float32
),
tf
.
int32
)
sampled_pos_idx
=
self
.
subsample_indicator
(
positive_idx
,
max_num_pos
)
num_sampled_pos
=
tf
.
reduce_sum
(
input_tensor
=
tf
.
cast
(
sampled_pos_idx
,
tf
.
int32
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment