Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
5a3b762c
Commit
5a3b762c
authored
Nov 18, 2019
by
Allen Wang
Committed by
A. Unique TensorFlower
Nov 18, 2019
Browse files
Internal change
PiperOrigin-RevId: 281063737
parent
aedb9802
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
104 additions
and
75 deletions
+104
-75
official/modeling/training/distributed_executor.py
official/modeling/training/distributed_executor.py
+2
-74
official/utils/hyperparams_flags.py
official/utils/hyperparams_flags.py
+100
-0
official/vision/detection/main.py
official/vision/detection/main.py
+2
-1
No files found.
official/modeling/training/distributed_executor.py
View file @
5a3b762c
...
...
@@ -22,9 +22,10 @@ from __future__ import print_function
import
json
import
os
import
numpy
as
np
from
absl
import
flags
from
absl
import
logging
import
numpy
as
np
import
tensorflow
as
tf
# pylint: disable=unused-import,g-import-not-at-top,redefined-outer-name,reimported
...
...
@@ -35,79 +36,6 @@ from official.utils.misc import tpu_lib
FLAGS
=
flags
.
FLAGS
def
define_common_hparams_flags
():
"""Define the common flags across models."""
flags
.
DEFINE_string
(
'model_dir'
,
default
=
None
,
help
=
(
'The directory where the model and training/evaluation summaries'
'are stored.'
))
flags
.
DEFINE_integer
(
'train_batch_size'
,
default
=
None
,
help
=
'Batch size for training.'
)
flags
.
DEFINE_integer
(
'eval_batch_size'
,
default
=
None
,
help
=
'Batch size for evaluation.'
)
flags
.
DEFINE_string
(
'precision'
,
default
=
None
,
help
=
(
'Precision to use; one of: {bfloat16, float32}'
))
flags
.
DEFINE_string
(
'config_file'
,
default
=
None
,
help
=
(
'A YAML file which specifies overrides. Note that this file can be '
'used as an override template to override the default parameters '
'specified in Python. If the same parameter is specified in both '
'`--config_file` and `--params_override`, the one in '
'`--params_override` will be used finally.'
))
flags
.
DEFINE_string
(
'params_override'
,
default
=
None
,
help
=
(
'a YAML/JSON string or a YAML file which specifies additional '
'overrides over the default parameters and those specified in '
'`--config_file`. Note that this is supposed to be used only to '
'override the model parameters, but not the parameters like TPU '
'specific flags. One canonical use case of `--config_file` and '
'`--params_override` is users first define a template config file '
'using `--config_file`, then use `--params_override` to adjust the '
'minimal set of tuning parameters, for example setting up different'
' `train_batch_size`. '
'The final override order of parameters: default_model_params --> '
'params from config_file --> params in params_override.'
'See also the help message of `--config_file`.'
))
flags
.
DEFINE_string
(
'strategy_type'
,
'mirrored'
,
'Type of distribute strategy.'
'One of mirrored, tpu and multiworker.'
)
def
initialize_common_flags
():
"""Define the common flags across models."""
define_common_hparams_flags
()
flags
.
DEFINE_string
(
'tpu'
,
default
=
None
,
help
=
'The Cloud TPU to use for training. This should be either the name '
'used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 '
'url.'
)
# Parameters for MultiWorkerMirroredStrategy
flags
.
DEFINE_string
(
'worker_hosts'
,
default
=
None
,
help
=
'Comma-separated list of worker ip:port pairs for running '
'multi-worker models with distribution strategy. The user would '
'start the program on each host with identical value for this flag.'
)
flags
.
DEFINE_integer
(
'task_index'
,
0
,
'If multi-worker training, the task_index of this worker.'
)
flags
.
DEFINE_integer
(
'save_checkpoint_freq'
,
None
,
'Number of steps to save checkpoint.'
)
def
strategy_flags_dict
():
"""Returns TPU related flags in a dictionary."""
return
{
...
...
official/utils/hyperparams_flags.py
0 → 100644
View file @
5a3b762c
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Common flags for importing hyperparameters."""
from
__future__
import
absolute_import
from
__future__
import
division
# from __future__ import google_type_annotations
from
__future__
import
print_function
from
absl
import
flags
FLAGS
=
flags
.
FLAGS
def
define_common_hparams_flags
():
"""Define the common flags across models."""
flags
.
DEFINE_string
(
'model_dir'
,
default
=
None
,
help
=
(
'The directory where the model and training/evaluation summaries'
'are stored.'
))
flags
.
DEFINE_integer
(
'train_batch_size'
,
default
=
None
,
help
=
'Batch size for training.'
)
flags
.
DEFINE_integer
(
'eval_batch_size'
,
default
=
None
,
help
=
'Batch size for evaluation.'
)
flags
.
DEFINE_string
(
'precision'
,
default
=
None
,
help
=
(
'Precision to use; one of: {bfloat16, float32}'
))
flags
.
DEFINE_string
(
'config_file'
,
default
=
None
,
help
=
(
'A YAML file which specifies overrides. Note that this file can be '
'used as an override template to override the default parameters '
'specified in Python. If the same parameter is specified in both '
'`--config_file` and `--params_override`, the one in '
'`--params_override` will be used finally.'
))
flags
.
DEFINE_string
(
'params_override'
,
default
=
None
,
help
=
(
'a YAML/JSON string or a YAML file which specifies additional '
'overrides over the default parameters and those specified in '
'`--config_file`. Note that this is supposed to be used only to '
'override the model parameters, but not the parameters like TPU '
'specific flags. One canonical use case of `--config_file` and '
'`--params_override` is users first define a template config file '
'using `--config_file`, then use `--params_override` to adjust the '
'minimal set of tuning parameters, for example setting up different'
' `train_batch_size`. '
'The final override order of parameters: default_model_params --> '
'params from config_file --> params in params_override.'
'See also the help message of `--config_file`.'
))
flags
.
DEFINE_string
(
'strategy_type'
,
'mirrored'
,
'Type of distribute strategy.'
'One of mirrored, tpu and multiworker.'
)
def
initialize_common_flags
():
"""Define the common flags across models."""
key_flags
=
[]
define_common_hparams_flags
()
flags
.
DEFINE_string
(
'tpu'
,
default
=
None
,
help
=
'The Cloud TPU to use for training. This should be either the name '
'used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 '
'url.'
)
# Parameters for MultiWorkerMirroredStrategy
flags
.
DEFINE_string
(
'worker_hosts'
,
default
=
None
,
help
=
'Comma-separated list of worker ip:port pairs for running '
'multi-worker models with distribution strategy. The user would '
'start the program on each host with identical value for this flag.'
)
flags
.
DEFINE_integer
(
'task_index'
,
0
,
'If multi-worker training, the task_index of this worker.'
)
flags
.
DEFINE_integer
(
'save_checkpoint_freq'
,
None
,
'Number of steps to save checkpoint.'
)
return
key_flags
official/vision/detection/main.py
View file @
5a3b762c
...
...
@@ -29,13 +29,14 @@ import tensorflow.compat.v2 as tf
from
official.modeling.hyperparams
import
params_dict
from
official.modeling.training
import
distributed_executor
as
executor
from
official.utils
import
hyperparams_flags
from
official.vision.detection.configs
import
factory
as
config_factory
from
official.vision.detection.dataloader
import
input_reader
from
official.vision.detection.dataloader
import
mode_keys
as
ModeKeys
from
official.vision.detection.executor.detection_executor
import
DetectionDistributedExecutor
from
official.vision.detection.modeling
import
factory
as
model_factory
executor
.
initialize_common_flags
()
hyperparams_flags
.
initialize_common_flags
()
flags
.
DEFINE_string
(
'mode'
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment