Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
589fe5d1
Commit
589fe5d1
authored
May 24, 2021
by
A. Unique TensorFlower
Browse files
Merge pull request #10009 from supersteph:run_superglue
PiperOrigin-RevId: 375508114
parents
2ad3e213
93cdbaf5
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
431 additions
and
0 deletions
+431
-0
official/nlp/finetuning/binary_helper.py
official/nlp/finetuning/binary_helper.py
+42
-0
official/nlp/finetuning/superglue/flags.py
official/nlp/finetuning/superglue/flags.py
+173
-0
official/nlp/finetuning/superglue/run_superglue.py
official/nlp/finetuning/superglue/run_superglue.py
+216
-0
No files found.
official/nlp/finetuning/binary_helper.py
View file @
589fe5d1
...
@@ -310,6 +310,48 @@ def write_glue_classification(task,
...
@@ -310,6 +310,48 @@ def write_glue_classification(task,
writer
.
write
(
'%d
\t
%s
\n
'
%
(
index
,
class_names
[
prediction
]))
writer
.
write
(
'%d
\t
%s
\n
'
%
(
index
,
class_names
[
prediction
]))
def
write_superglue_classification
(
task
,
model
,
input_file
,
output_file
,
predict_batch_size
,
seq_length
,
class_names
,
label_type
=
'int'
):
"""Makes classification predictions for superglue and writes to output file.
Args:
task: `Task` instance.
model: `keras.Model` instance.
input_file: Input test data file path.
output_file: Output test data file path.
predict_batch_size: Batch size for prediction.
seq_length: Input sequence length.
class_names: List of string class names.
label_type: String denoting label type ('int', 'float'), defaults to 'int'.
"""
if
label_type
not
in
'int'
:
raise
ValueError
(
'Unsupported `label_type`. Given: %s, expected `int` or '
'`float`.'
%
label_type
)
data_config
=
sentence_prediction_dataloader
.
SentencePredictionDataConfig
(
input_path
=
input_file
,
global_batch_size
=
predict_batch_size
,
is_training
=
False
,
seq_length
=
seq_length
,
label_type
=
label_type
,
drop_remainder
=
False
,
include_example_id
=
True
)
predictions
=
sentence_prediction
.
predict
(
task
,
data_config
,
model
)
with
tf
.
io
.
gfile
.
GFile
(
output_file
,
'w'
)
as
writer
:
for
index
,
prediction
in
enumerate
(
predictions
):
if
label_type
==
'int'
:
# Classification.
writer
.
write
(
'{"idx": %d, "label": %s}
\n
'
%
(
index
,
class_names
[
prediction
]))
def
write_xtreme_classification
(
task
,
def
write_xtreme_classification
(
task
,
model
,
model
,
input_file
,
input_file
,
...
...
official/nlp/finetuning/superglue/flags.py
0 → 100644
View file @
589fe5d1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Common flags for SuperGLUE finetuning binary."""
from
typing
import
Callable
from
absl
import
flags
from
absl
import
logging
def
define_flags
():
"""Defines flags."""
# ===========================================================================
# SuperGlue binary flags.
# ===========================================================================
flags
.
DEFINE_enum
(
'mode'
,
'train_eval_and_predict'
,
[
'train_eval_and_predict'
,
'train_eval'
,
'predict'
],
'The mode to run the binary. If `train_eval_and_predict` '
'it will (1) train on the training data and (2) evaluate on '
'the validation data and (3) finally generate predictions '
'on the prediction data; if `train_eval`, it will only '
'run training and evaluation; if `predict`, it will only '
'run prediction using the model in `model_dir`.'
)
flags
.
DEFINE_enum
(
'task_name'
,
None
,
[
'AX-b'
,
'CB'
,
'COPA'
,
'MULTIRC'
,
'RTE'
,
'WiC'
,
'WSC'
,
'BoolQ'
,
'ReCoRD'
,
'AX-g'
,
],
'The type of SuperGLUE task.'
)
flags
.
DEFINE_string
(
'train_input_path'
,
None
,
'The file path to the training data.'
)
flags
.
DEFINE_string
(
'validation_input_path'
,
None
,
'The file path to the evaluation data.'
)
flags
.
DEFINE_string
(
'test_input_path'
,
None
,
'The file path to the test input data.'
)
flags
.
DEFINE_string
(
'test_output_path'
,
None
,
'The file path to the test output data.'
)
flags
.
DEFINE_string
(
'model_dir'
,
''
,
'The model directory containing '
'subdirectories for each task. Only needed for "predict" '
'mode. For all other modes, if not provided, a unique '
'directory will be created automatically for each run.'
)
flags
.
DEFINE_string
(
'input_meta_data_path'
,
None
,
'Path to file that contains '
'metadata about input file. It is output by the `create_finetuning_data` '
'binary. Required for all modes except "predict".'
)
flags
.
DEFINE_string
(
'init_checkpoint'
,
''
,
'Initial checkpoint from a pre-trained BERT model.'
)
flags
.
DEFINE_string
(
'model_config_file'
,
''
,
'The config file specifying the architecture '
'of the pre-trained model. The file can be either a bert_config.json '
'file or `encoders.EncoderConfig` in yaml file.'
)
flags
.
DEFINE_string
(
'hub_module_url'
,
''
,
'TF-Hub path/url to a pretrained model. If '
'specified, `init_checkpoint` and `model_config_file` flag should not be '
'used.'
)
flags
.
DEFINE_multi_string
(
'gin_file'
,
None
,
'List of paths to the gin config files.'
)
flags
.
DEFINE_multi_string
(
'gin_params'
,
None
,
'Newline separated list of gin parameter bindings.'
)
flags
.
DEFINE_multi_string
(
'config_file'
,
None
,
'This is the advanced usage to specify the '
'`ExperimentConfig` directly. When specified, '
'we will ignore FLAGS related to `ExperimentConfig` such as '
'`train_input_path`, `validation_input_path` and following hparams.'
)
# ===========================================================================
# Tuning hparams.
# ===========================================================================
flags
.
DEFINE_integer
(
'global_batch_size'
,
32
,
'Global batch size for train/eval/predict.'
)
flags
.
DEFINE_float
(
'learning_rate'
,
3e-5
,
'Initial learning rate.'
)
flags
.
DEFINE_integer
(
'num_epoch'
,
3
,
'Number of training epochs.'
)
flags
.
DEFINE_float
(
'warmup_ratio'
,
0.1
,
'Proportion of learning rate warmup steps.'
)
flags
.
DEFINE_integer
(
'num_eval_per_epoch'
,
2
,
'Number of evaluations to run per epoch.'
)
def
validate_flags
(
flags_obj
:
flags
.
FlagValues
,
file_exists_fn
:
Callable
[[
str
],
bool
]):
"""Raises ValueError if any flags are misconfigured.
Args:
flags_obj: A `flags.FlagValues` object, usually from `flags.FLAG`.
file_exists_fn: A callable to decide if a file path exists or not.
"""
def
_check_path_exists
(
flag_path
,
flag_name
):
if
not
file_exists_fn
(
flag_path
):
raise
ValueError
(
'Flag `%s` at %s does not exist.'
%
(
flag_name
,
flag_path
))
def
_validate_path
(
flag_path
,
flag_name
):
if
not
flag_path
:
raise
ValueError
(
'Flag `%s` must be provided in mode %s.'
%
(
flag_name
,
flags_obj
.
mode
))
_check_path_exists
(
flag_path
,
flag_name
)
if
'train'
in
flags_obj
.
mode
:
_validate_path
(
flags_obj
.
train_input_path
,
'train_input_path'
)
_validate_path
(
flags_obj
.
input_meta_data_path
,
'input_meta_data_path'
)
if
flags_obj
.
gin_file
:
for
gin_file
in
flags_obj
.
gin_file
:
_check_path_exists
(
gin_file
,
'gin_file'
)
if
flags_obj
.
config_file
:
for
config_file
in
flags_obj
.
config_file
:
_check_path_exists
(
config_file
,
'config_file'
)
if
'eval'
in
flags_obj
.
mode
:
_validate_path
(
flags_obj
.
validation_input_path
,
'validation_input_path'
)
if
flags_obj
.
mode
==
'predict'
:
# model_dir is only needed strictly in 'predict' mode.
_validate_path
(
flags_obj
.
model_dir
,
'model_dir'
)
if
'predict'
in
flags_obj
.
mode
:
_validate_path
(
flags_obj
.
test_input_path
,
'test_input_path'
)
if
not
flags_obj
.
config_file
and
flags_obj
.
mode
!=
'predict'
:
if
flags_obj
.
hub_module_url
:
if
flags_obj
.
init_checkpoint
or
flags_obj
.
model_config_file
:
raise
ValueError
(
'When `hub_module_url` is specified, `init_checkpoint` and '
'`model_config_file` should be empty.'
)
logging
.
info
(
'Using the pretrained tf.hub from %s'
,
flags_obj
.
hub_module_url
)
else
:
if
not
(
flags_obj
.
init_checkpoint
and
flags_obj
.
model_config_file
):
raise
ValueError
(
'Both `init_checkpoint` and `model_config_file` '
'should be specified if `config_file` is not '
'specified.'
)
_validate_path
(
flags_obj
.
model_config_file
,
'model_config_file'
)
logging
.
info
(
'Using the pretrained checkpoint from %s and model_config_file from '
'%s.'
,
flags_obj
.
init_checkpoint
,
flags_obj
.
model_config_file
)
official/nlp/finetuning/superglue/run_superglue.py
0 → 100644
View file @
589fe5d1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Runs prediction to generate submission files for SuperGLUE tasks."""
import
functools
import
json
import
os
import
pprint
from
absl
import
app
from
absl
import
flags
from
absl
import
logging
import
gin
import
tensorflow
as
tf
from
official.common
import
distribute_utils
# Imports registered experiment configs.
from
official.core
import
exp_factory
from
official.core
import
task_factory
from
official.core
import
train_lib
from
official.core
import
train_utils
from
official.modeling.hyperparams
import
params_dict
from
official.nlp.finetuning
import
binary_helper
from
official.nlp.finetuning.superglue
import
flags
as
superglue_flags
# Device configs.
flags
.
DEFINE_string
(
'distribution_strategy'
,
'tpu'
,
'The Distribution Strategy to use for training.'
)
flags
.
DEFINE_string
(
'tpu'
,
''
,
'The Cloud TPU to use for training. This should be either the name '
'used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 url.'
)
flags
.
DEFINE_integer
(
'num_gpus'
,
1
,
'The number of GPUs to use at each worker.'
)
FLAGS
=
flags
.
FLAGS
EXPERIMENT_TYPE
=
'bert/sentence_prediction'
BEST_CHECKPOINT_EXPORT_SUBDIR
=
'best_ckpt'
EVAL_METRIC_MAP
=
{
'AX-b'
:
'matthews_corrcoef'
,
'CB'
:
'cls_accuracy'
,
'COPA'
:
'cls_accuracy'
,
'MULTIRC'
:
'exact_match'
,
'RTE'
:
'cls_accuracy'
,
'WiC'
:
'cls_accuracy'
,
'WSC'
:
'cls_accuracy'
,
'BoolQ'
:
'cls_accuracy'
,
'ReCoRD'
:
'cls_accuracy'
,
'AX-g'
:
'cls_accuracy'
,
}
AXG_CLASS_NAMES
=
[
'entailment'
,
'not_entailment'
]
RTE_CLASS_NAMES
=
[
'entailment'
,
'not_entailment'
]
def
_override_exp_config_by_file
(
exp_config
,
exp_config_files
):
"""Overrides an `ExperimentConfig` object by files."""
for
exp_config_file
in
exp_config_files
:
if
not
tf
.
io
.
gfile
.
exists
(
exp_config_file
):
raise
ValueError
(
'%s does not exist.'
%
exp_config_file
)
params_dict
.
override_params_dict
(
exp_config
,
exp_config_file
,
is_strict
=
True
)
return
exp_config
def
_override_exp_config_by_flags
(
exp_config
,
input_meta_data
):
"""Overrides an `ExperimentConfig` object by flags."""
if
FLAGS
.
task_name
in
'AX-b'
:
override_task_cfg_fn
=
functools
.
partial
(
binary_helper
.
override_sentence_prediction_task_config
,
num_classes
=
input_meta_data
[
'num_labels'
],
metric_type
=
'matthews_corrcoef'
)
elif
FLAGS
.
task_name
in
(
'CB'
,
'COPA'
,
'RTE'
,
'WiC'
,
'WSC'
,
'BoolQ'
,
'ReCoRD'
,
'AX-g'
):
override_task_cfg_fn
=
functools
.
partial
(
binary_helper
.
override_sentence_prediction_task_config
,
num_classes
=
input_meta_data
[
'num_labels'
])
else
:
raise
ValueError
(
'Task %s not supported.'
%
FLAGS
.
task_name
)
binary_helper
.
override_trainer_cfg
(
exp_config
.
trainer
,
learning_rate
=
FLAGS
.
learning_rate
,
num_epoch
=
FLAGS
.
num_epoch
,
global_batch_size
=
FLAGS
.
global_batch_size
,
warmup_ratio
=
FLAGS
.
warmup_ratio
,
training_data_size
=
input_meta_data
[
'train_data_size'
],
eval_data_size
=
input_meta_data
[
'eval_data_size'
],
num_eval_per_epoch
=
FLAGS
.
num_eval_per_epoch
,
best_checkpoint_export_subdir
=
BEST_CHECKPOINT_EXPORT_SUBDIR
,
best_checkpoint_eval_metric
=
EVAL_METRIC_MAP
[
FLAGS
.
task_name
],
best_checkpoint_metric_comp
=
'higher'
)
override_task_cfg_fn
(
exp_config
.
task
,
model_config_file
=
FLAGS
.
model_config_file
,
init_checkpoint
=
FLAGS
.
init_checkpoint
,
hub_module_url
=
FLAGS
.
hub_module_url
,
global_batch_size
=
FLAGS
.
global_batch_size
,
train_input_path
=
FLAGS
.
train_input_path
,
validation_input_path
=
FLAGS
.
validation_input_path
,
seq_length
=
input_meta_data
[
'max_seq_length'
])
return
exp_config
def
_get_exp_config
(
input_meta_data
,
exp_config_files
):
"""Gets an `ExperimentConfig` object."""
exp_config
=
exp_factory
.
get_exp_config
(
EXPERIMENT_TYPE
)
if
exp_config_files
:
logging
.
info
(
'Loading `ExperimentConfig` from file, and flags will be ignored.'
)
exp_config
=
_override_exp_config_by_file
(
exp_config
,
exp_config_files
)
else
:
logging
.
info
(
'Loading `ExperimentConfig` from flags.'
)
exp_config
=
_override_exp_config_by_flags
(
exp_config
,
input_meta_data
)
exp_config
.
validate
()
exp_config
.
lock
()
pp
=
pprint
.
PrettyPrinter
()
logging
.
info
(
'Final experiment parameters: %s'
,
pp
.
pformat
(
exp_config
.
as_dict
()))
return
exp_config
def
_write_submission_file
(
task
,
seq_length
):
"""Writes submission files that can be uploaded to the leaderboard."""
tf
.
io
.
gfile
.
makedirs
(
os
.
path
.
dirname
(
FLAGS
.
test_output_path
))
model
=
task
.
build_model
()
ckpt_file
=
tf
.
train
.
latest_checkpoint
(
os
.
path
.
join
(
FLAGS
.
model_dir
,
BEST_CHECKPOINT_EXPORT_SUBDIR
))
logging
.
info
(
'Restoring checkpoints from %s'
,
ckpt_file
)
checkpoint
=
tf
.
train
.
Checkpoint
(
model
=
model
)
checkpoint
.
read
(
ckpt_file
).
expect_partial
()
write_fn
=
binary_helper
.
write_superglue_classification
write_fn_map
=
{
'RTE'
:
functools
.
partial
(
write_fn
,
class_names
=
RTE_CLASS_NAMES
),
'AX-g'
:
functools
.
partial
(
write_fn
,
class_names
=
AXG_CLASS_NAMES
)
}
logging
.
info
(
'Predicting %s'
,
FLAGS
.
test_input_path
)
write_fn_map
[
FLAGS
.
task_name
](
task
=
task
,
model
=
model
,
input_file
=
FLAGS
.
test_input_path
,
output_file
=
FLAGS
.
test_output_path
,
predict_batch_size
=
(
task
.
task_config
.
train_data
.
global_batch_size
),
seq_length
=
seq_length
)
def
main
(
argv
):
if
len
(
argv
)
>
1
:
raise
app
.
UsageError
(
'Too many command-line arguments.'
)
superglue_flags
.
validate_flags
(
FLAGS
,
file_exists_fn
=
tf
.
io
.
gfile
.
exists
)
gin
.
parse_config_files_and_bindings
(
FLAGS
.
gin_file
,
FLAGS
.
gin_params
)
distribution_strategy
=
distribute_utils
.
get_distribution_strategy
(
distribution_strategy
=
FLAGS
.
distribution_strategy
,
num_gpus
=
FLAGS
.
num_gpus
,
tpu_address
=
FLAGS
.
tpu
)
with
tf
.
io
.
gfile
.
GFile
(
FLAGS
.
input_meta_data_path
,
'rb'
)
as
reader
:
input_meta_data
=
json
.
loads
(
reader
.
read
().
decode
(
'utf-8'
))
with
distribution_strategy
.
scope
():
task
=
None
if
'train_eval'
in
FLAGS
.
mode
:
logging
.
info
(
'Starting training and eval...'
)
logging
.
info
(
'Model dir: %s'
,
FLAGS
.
model_dir
)
exp_config
=
_get_exp_config
(
input_meta_data
=
input_meta_data
,
exp_config_files
=
FLAGS
.
config_file
)
train_utils
.
serialize_config
(
exp_config
,
FLAGS
.
model_dir
)
task
=
task_factory
.
get_task
(
exp_config
.
task
,
logging_dir
=
FLAGS
.
model_dir
)
train_lib
.
run_experiment
(
distribution_strategy
=
distribution_strategy
,
task
=
task
,
mode
=
'train_and_eval'
,
params
=
exp_config
,
model_dir
=
FLAGS
.
model_dir
)
if
'predict'
in
FLAGS
.
mode
:
logging
.
info
(
'Starting predict...'
)
# When mode is `predict`, `task` will be None.
if
task
is
None
:
exp_config
=
_get_exp_config
(
input_meta_data
=
input_meta_data
,
exp_config_files
=
[
os
.
path
.
join
(
FLAGS
.
model_dir
,
'params.yaml'
)])
task
=
task_factory
.
get_task
(
exp_config
.
task
,
logging_dir
=
FLAGS
.
model_dir
)
_write_submission_file
(
task
,
input_meta_data
[
'max_seq_length'
])
if
__name__
==
'__main__'
:
superglue_flags
.
define_flags
()
flags
.
mark_flag_as_required
(
'mode'
)
flags
.
mark_flag_as_required
(
'task_name'
)
app
.
run
(
main
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment