Commit 565a22c1 authored by Carlos Riquelme's avatar Carlos Riquelme
Browse files

Readme changes.

parent 332be2d0
......@@ -202,9 +202,10 @@ The Deep Bayesian Bandits library includes the following algorithms (see the
consists in randomly perturbing a point estimate trained by Stochastic
Gradient Descent on the data. The Parameter-Noise algorithm uses a heuristic
to control the amount of noise &sigma;<sub>t</sub><sup>2</sup> it adds independently to the
parameters representing a neural network: &theta;<sub>t</sub><sup>'</sup> where ![equation](https://latex.codecogs.com/gif.download?%5Cinline%20%5Cepsilon%20%5Csim%20%5Cmathcal%7BN%7D%280%2C%20%5Csigma_t%5E2%20%5C%20%5Cmathrm%7BId%7D%29).
After using ![equation](https://latex.codecogs.com/gif.download?%5Cinline%20%5Cbar%7B%5Ctheta%7D_t) for decision making, the following SGD
training steps start again from ![equation](https://latex.codecogs.com/gif.download?%5Cinline%20%5Ctheta_t). The key hyperparameters to set
parameters representing a neural network: &theta;<sub>t</sub><sup>'</sup> = &theta;<sub>t</sub> + &epsilon; where
&epsilon; &sim; N(0, &sigma;<sub>t</sub><sup>2</sup> Id).
After using &theta;<sub>t</sub><sup>'</sup> for decision making, the following SGD
training steps start again from &theta;<sub>t</sub>. The key hyperparameters to set
are those controlling the noise heuristic.
See [Parameter Space Noise for
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment