Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
564f8d4d
Unverified
Commit
564f8d4d
authored
Jun 22, 2018
by
Mark Daoust
Committed by
GitHub
Jun 22, 2018
Browse files
Merge pull request #4608 from yashk2810/activation_change
Use TensorFlow functions instead of Keras strings
parents
a81e1e7c
18de5380
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
15 additions
and
15 deletions
+15
-15
samples/core/get_started/overfit_and_underfit.ipynb
samples/core/get_started/overfit_and_underfit.ipynb
+15
-15
No files found.
samples/core/get_started/overfit_and_underfit.ipynb
View file @
564f8d4d
...
@@ -292,9 +292,9 @@
...
@@ -292,9 +292,9 @@
"cell_type": "code",
"cell_type": "code",
"source": [
"source": [
"baseline_model = keras.Sequential([\n",
"baseline_model = keras.Sequential([\n",
" keras.layers.Dense(16, activation=
'
relu
'
, input_shape=(10000,)),\n",
" keras.layers.Dense(16, activation=
tf.nn.
relu, input_shape=(10000,)),\n",
" keras.layers.Dense(16, activation=
'
relu
'
),\n",
" keras.layers.Dense(16, activation=
tf.nn.
relu),\n",
" keras.layers.Dense(1, activation=
'
sigmoid
'
)\n",
" keras.layers.Dense(1, activation=
tf.nn.
sigmoid)\n",
"])\n",
"])\n",
"\n",
"\n",
"baseline_model.compile(optimizer='adam',\n",
"baseline_model.compile(optimizer='adam',\n",
...
@@ -363,9 +363,9 @@
...
@@ -363,9 +363,9 @@
"cell_type": "code",
"cell_type": "code",
"source": [
"source": [
"smaller_model = keras.Sequential([\n",
"smaller_model = keras.Sequential([\n",
" keras.layers.Dense(4, activation=
'
relu
'
, input_shape=(10000,)),\n",
" keras.layers.Dense(4, activation=
tf.nn.
relu, input_shape=(10000,)),\n",
" keras.layers.Dense(4, activation=
'
relu
'
),\n",
" keras.layers.Dense(4, activation=
tf.nn.
relu),\n",
" keras.layers.Dense(1, activation=
'
sigmoid
'
)\n",
" keras.layers.Dense(1, activation=
tf.nn.
sigmoid)\n",
"])\n",
"])\n",
"\n",
"\n",
"smaller_model.compile(optimizer='adam',\n",
"smaller_model.compile(optimizer='adam',\n",
...
@@ -436,9 +436,9 @@
...
@@ -436,9 +436,9 @@
"cell_type": "code",
"cell_type": "code",
"source": [
"source": [
"bigger_model = keras.models.Sequential([\n",
"bigger_model = keras.models.Sequential([\n",
" keras.layers.Dense(512, activation=
'
relu
'
, input_shape=(10000,)),\n",
" keras.layers.Dense(512, activation=
tf.nn.
relu, input_shape=(10000,)),\n",
" keras.layers.Dense(512, activation=
'
relu
'
),\n",
" keras.layers.Dense(512, activation=
tf.nn.
relu),\n",
" keras.layers.Dense(1, activation=
'
sigmoid
'
)\n",
" keras.layers.Dense(1, activation=
tf.nn.
sigmoid)\n",
"])\n",
"])\n",
"\n",
"\n",
"bigger_model.compile(optimizer='adam',\n",
"bigger_model.compile(optimizer='adam',\n",
...
@@ -604,10 +604,10 @@
...
@@ -604,10 +604,10 @@
"source": [
"source": [
"l2_model = keras.models.Sequential([\n",
"l2_model = keras.models.Sequential([\n",
" keras.layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),\n",
" keras.layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),\n",
" activation=
'
relu
'
, input_shape=(10000,)),\n",
" activation=
tf.nn.
relu, input_shape=(10000,)),\n",
" keras.layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),\n",
" keras.layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),\n",
" activation=
'
relu
'
),\n",
" activation=
tf.nn.
relu),\n",
" keras.layers.Dense(1, activation=
'
sigmoid
'
)\n",
" keras.layers.Dense(1, activation=
tf.nn.
sigmoid)\n",
"])\n",
"])\n",
"\n",
"\n",
"l2_model.compile(optimizer='adam',\n",
"l2_model.compile(optimizer='adam',\n",
...
@@ -695,11 +695,11 @@
...
@@ -695,11 +695,11 @@
"cell_type": "code",
"cell_type": "code",
"source": [
"source": [
"dpt_model = keras.models.Sequential([\n",
"dpt_model = keras.models.Sequential([\n",
" keras.layers.Dense(16, activation=
'
relu
'
, input_shape=(10000,)),\n",
" keras.layers.Dense(16, activation=
tf.nn.
relu, input_shape=(10000,)),\n",
" keras.layers.Dropout(0.5),\n",
" keras.layers.Dropout(0.5),\n",
" keras.layers.Dense(16, activation=
'
relu
'
),\n",
" keras.layers.Dense(16, activation=
tf.nn.
relu),\n",
" keras.layers.Dropout(0.5),\n",
" keras.layers.Dropout(0.5),\n",
" keras.layers.Dense(1, activation=
'
sigmoid
'
)\n",
" keras.layers.Dense(1, activation=
tf.nn.
sigmoid)\n",
"])\n",
"])\n",
"\n",
"\n",
"dpt_model.compile(optimizer='adam',\n",
"dpt_model.compile(optimizer='adam',\n",
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment