Commit 54e406c0 authored by A. Unique TensorFlower's avatar A. Unique TensorFlower
Browse files

Fix minor comment typos in BERT and MobileBERT APIs.

PiperOrigin-RevId: 360529962
parent 1630eccd
...@@ -60,7 +60,7 @@ class BertEncoder(tf.keras.Model): ...@@ -60,7 +60,7 @@ class BertEncoder(tf.keras.Model):
initializer: The initialzer to use for all weights in this encoder. initializer: The initialzer to use for all weights in this encoder.
output_range: The sequence output range, [0, output_range), by slicing the output_range: The sequence output range, [0, output_range), by slicing the
target sequence of the last transformer layer. `None` means the entire target sequence of the last transformer layer. `None` means the entire
target sequence will attend to the source sequence, which yeilds the full target sequence will attend to the source sequence, which yields the full
output. output.
embedding_width: The width of the word embeddings. If the embedding width is embedding_width: The width of the word embeddings. If the embedding width is
not equal to hidden size, embedding parameters will be factorized into two not equal to hidden size, embedding parameters will be factorized into two
......
...@@ -22,7 +22,7 @@ from official.nlp.modeling.networks import mobile_bert_encoder ...@@ -22,7 +22,7 @@ from official.nlp.modeling.networks import mobile_bert_encoder
def generate_fake_input(batch_size=1, seq_len=5, vocab_size=10000, seed=0): def generate_fake_input(batch_size=1, seq_len=5, vocab_size=10000, seed=0):
"""Generate consisitant fake integer input sequences.""" """Generate consistent fake integer input sequences."""
np.random.seed(seed) np.random.seed(seed)
fake_input = [] fake_input = []
for _ in range(batch_size): for _ in range(batch_size):
......
...@@ -65,7 +65,7 @@ class BertEncoder(keras_nlp.encoders.BertEncoder): ...@@ -65,7 +65,7 @@ class BertEncoder(keras_nlp.encoders.BertEncoder):
keyed by `encoder_outputs`. keyed by `encoder_outputs`.
output_range: The sequence output range, [0, output_range), by slicing the output_range: The sequence output range, [0, output_range), by slicing the
target sequence of the last transformer layer. `None` means the entire target sequence of the last transformer layer. `None` means the entire
target sequence will attend to the source sequence, which yeilds the full target sequence will attend to the source sequence, which yields the full
output. output.
embedding_width: The width of the word embeddings. If the embedding width is embedding_width: The width of the word embeddings. If the embedding width is
not equal to hidden size, embedding parameters will be factorized into two not equal to hidden size, embedding parameters will be factorized into two
......
...@@ -21,7 +21,7 @@ from official.nlp.modeling.networks import mobile_bert_encoder ...@@ -21,7 +21,7 @@ from official.nlp.modeling.networks import mobile_bert_encoder
def generate_fake_input(batch_size=1, seq_len=5, vocab_size=10000, seed=0): def generate_fake_input(batch_size=1, seq_len=5, vocab_size=10000, seed=0):
"""Generate consisitant fake integer input sequences.""" """Generate consistent fake integer input sequences."""
np.random.seed(seed) np.random.seed(seed)
fake_input = [] fake_input = []
for _ in range(batch_size): for _ in range(batch_size):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment