"git@developer.sourcefind.cn:OpenDAS/mmdetection3d.git" did not exist on "28d21e21ebc41d39fbb2359c219128191d67602e"
Commit 5474ad71 authored by Hongkun Yu's avatar Hongkun Yu Committed by A. Unique TensorFlower
Browse files

Update to super() for py3 style.

PiperOrigin-RevId: 464429203
parent 9ba82dc4
...@@ -59,7 +59,7 @@ class BlockDiagFeedforward(tf.keras.layers.Layer): ...@@ -59,7 +59,7 @@ class BlockDiagFeedforward(tf.keras.layers.Layer):
kernel_constraint: Optional[tf.keras.constraints.Constraint] = None, kernel_constraint: Optional[tf.keras.constraints.Constraint] = None,
bias_constraint: Optional[tf.keras.constraints.Constraint] = None, bias_constraint: Optional[tf.keras.constraints.Constraint] = None,
**kwargs): # pylint: disable=g-doc-args **kwargs): # pylint: disable=g-doc-args
super(BlockDiagFeedforward, self).__init__(**kwargs) super().__init__(**kwargs)
self._intermediate_size = intermediate_size self._intermediate_size = intermediate_size
self._intermediate_activation = intermediate_activation self._intermediate_activation = intermediate_activation
self._dropout = dropout self._dropout = dropout
...@@ -156,7 +156,7 @@ class BlockDiagFeedforward(tf.keras.layers.Layer): ...@@ -156,7 +156,7 @@ class BlockDiagFeedforward(tf.keras.layers.Layer):
"bias_constraint": "bias_constraint":
tf.keras.constraints.serialize(self._bias_constraint) tf.keras.constraints.serialize(self._bias_constraint)
} }
base_config = super(BlockDiagFeedforward, self).get_config() base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items())) return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs): def call(self, inputs):
......
...@@ -116,7 +116,7 @@ class RandomFeatureGaussianProcess(tf.keras.layers.Layer): ...@@ -116,7 +116,7 @@ class RandomFeatureGaussianProcess(tf.keras.layers.Layer):
name: (string) Layer name. name: (string) Layer name.
**gp_output_kwargs: Additional keyword arguments to dense output layer. **gp_output_kwargs: Additional keyword arguments to dense output layer.
""" """
super(RandomFeatureGaussianProcess, self).__init__(name=name, dtype=dtype) super().__init__(name=name, dtype=dtype)
self.units = units self.units = units
self.num_inducing = num_inducing self.num_inducing = num_inducing
......
...@@ -47,7 +47,7 @@ class MaskedLM(tf.keras.layers.Layer): ...@@ -47,7 +47,7 @@ class MaskedLM(tf.keras.layers.Layer):
output='logits', output='logits',
name=None, name=None,
**kwargs): **kwargs):
super(MaskedLM, self).__init__(name=name, **kwargs) super().__init__(name=name, **kwargs)
self.embedding_table = embedding_table self.embedding_table = embedding_table
self.activation = activation self.activation = activation
self.initializer = tf.keras.initializers.get(initializer) self.initializer = tf.keras.initializers.get(initializer)
...@@ -73,7 +73,7 @@ class MaskedLM(tf.keras.layers.Layer): ...@@ -73,7 +73,7 @@ class MaskedLM(tf.keras.layers.Layer):
initializer='zeros', initializer='zeros',
trainable=True) trainable=True)
super(MaskedLM, self).build(input_shape) super().build(input_shape)
def call(self, sequence_data, masked_positions): def call(self, sequence_data, masked_positions):
masked_lm_input = self._gather_indexes(sequence_data, masked_positions) masked_lm_input = self._gather_indexes(sequence_data, masked_positions)
......
...@@ -53,7 +53,7 @@ class MaskedSoftmax(tf.keras.layers.Layer): ...@@ -53,7 +53,7 @@ class MaskedSoftmax(tf.keras.layers.Layer):
self._normalization_axes = (-1,) self._normalization_axes = (-1,)
else: else:
self._normalization_axes = normalization_axes self._normalization_axes = normalization_axes
super(MaskedSoftmax, self).__init__(**kwargs) super().__init__(**kwargs)
def call(self, scores, mask=None): def call(self, scores, mask=None):
...@@ -81,5 +81,5 @@ class MaskedSoftmax(tf.keras.layers.Layer): ...@@ -81,5 +81,5 @@ class MaskedSoftmax(tf.keras.layers.Layer):
'mask_expansion_axes': self._mask_expansion_axes, 'mask_expansion_axes': self._mask_expansion_axes,
'normalization_axes': self._normalization_axes 'normalization_axes': self._normalization_axes
} }
base_config = super(MaskedSoftmax, self).get_config() base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items())) return dict(list(base_config.items()) + list(config.items()))
...@@ -36,7 +36,7 @@ class MatMulWithMargin(tf.keras.layers.Layer): ...@@ -36,7 +36,7 @@ class MatMulWithMargin(tf.keras.layers.Layer):
logit_scale=1.0, logit_scale=1.0,
logit_margin=0.0, logit_margin=0.0,
**kwargs): **kwargs):
super(MatMulWithMargin, self).__init__(**kwargs) super().__init__(**kwargs)
self.logit_scale = logit_scale self.logit_scale = logit_scale
self.logit_margin = logit_margin self.logit_margin = logit_margin
...@@ -61,7 +61,7 @@ class MatMulWithMargin(tf.keras.layers.Layer): ...@@ -61,7 +61,7 @@ class MatMulWithMargin(tf.keras.layers.Layer):
config = { config = {
'logit_scale': self.logit_scale, 'logit_scale': self.logit_scale,
'logit_margin': self.logit_margin} 'logit_margin': self.logit_margin}
config.update(super(MatMulWithMargin, self).get_config()) config.update(super().get_config())
return config return config
@classmethod @classmethod
......
...@@ -26,7 +26,7 @@ class NoNorm(tf.keras.layers.Layer): ...@@ -26,7 +26,7 @@ class NoNorm(tf.keras.layers.Layer):
"""Apply element-wise linear transformation to the last dimension.""" """Apply element-wise linear transformation to the last dimension."""
def __init__(self, name=None): def __init__(self, name=None):
super(NoNorm, self).__init__(name=name) super().__init__(name=name)
def build(self, shape): def build(self, shape):
kernal_size = shape[-1] kernal_size = shape[-1]
...@@ -98,7 +98,7 @@ class MobileBertEmbedding(tf.keras.layers.Layer): ...@@ -98,7 +98,7 @@ class MobileBertEmbedding(tf.keras.layers.Layer):
dropout_rate: Dropout rate. dropout_rate: Dropout rate.
**kwargs: keyword arguments. **kwargs: keyword arguments.
""" """
super(MobileBertEmbedding, self).__init__(**kwargs) super().__init__(**kwargs)
self.word_vocab_size = word_vocab_size self.word_vocab_size = word_vocab_size
self.word_embed_size = word_embed_size self.word_embed_size = word_embed_size
self.type_vocab_size = type_vocab_size self.type_vocab_size = type_vocab_size
...@@ -222,7 +222,7 @@ class MobileBertTransformer(tf.keras.layers.Layer): ...@@ -222,7 +222,7 @@ class MobileBertTransformer(tf.keras.layers.Layer):
Raises: Raises:
ValueError: A Tensor shape or parameter is invalid. ValueError: A Tensor shape or parameter is invalid.
""" """
super(MobileBertTransformer, self).__init__(**kwargs) super().__init__(**kwargs)
self.hidden_size = hidden_size self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size self.intermediate_size = intermediate_size
...@@ -459,7 +459,7 @@ class MobileBertMaskedLM(tf.keras.layers.Layer): ...@@ -459,7 +459,7 @@ class MobileBertMaskedLM(tf.keras.layers.Layer):
`predictions`. `predictions`.
**kwargs: keyword arguments. **kwargs: keyword arguments.
""" """
super(MobileBertMaskedLM, self).__init__(**kwargs) super().__init__(**kwargs)
self.embedding_table = embedding_table self.embedding_table = embedding_table
self.activation = activation self.activation = activation
self.initializer = tf.keras.initializers.get(initializer) self.initializer = tf.keras.initializers.get(initializer)
......
...@@ -49,7 +49,7 @@ class VotingAttention(tf.keras.layers.Layer): ...@@ -49,7 +49,7 @@ class VotingAttention(tf.keras.layers.Layer):
kernel_constraint=None, kernel_constraint=None,
bias_constraint=None, bias_constraint=None,
**kwargs): **kwargs):
super(VotingAttention, self).__init__(**kwargs) super().__init__(**kwargs)
self._num_heads = num_heads self._num_heads = num_heads
self._head_size = head_size self._head_size = head_size
self._kernel_initializer = tf.keras.initializers.get(kernel_initializer) self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
...@@ -82,7 +82,7 @@ class VotingAttention(tf.keras.layers.Layer): ...@@ -82,7 +82,7 @@ class VotingAttention(tf.keras.layers.Layer):
kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer), kernel_initializer=tf_utils.clone_initializer(self._kernel_initializer),
bias_initializer=tf_utils.clone_initializer(self._bias_initializer), bias_initializer=tf_utils.clone_initializer(self._bias_initializer),
**common_kwargs) **common_kwargs)
super(VotingAttention, self).build(unused_input_shapes) super().build(unused_input_shapes)
def call(self, encoder_outputs, doc_attention_mask): def call(self, encoder_outputs, doc_attention_mask):
num_docs = tf_utils.get_shape_list(encoder_outputs, expected_rank=[4])[1] num_docs = tf_utils.get_shape_list(encoder_outputs, expected_rank=[4])[1]
...@@ -123,7 +123,7 @@ class MultiChannelAttention(tf.keras.layers.MultiHeadAttention): ...@@ -123,7 +123,7 @@ class MultiChannelAttention(tf.keras.layers.MultiHeadAttention):
""" """
def _build_attention(self, rank): def _build_attention(self, rank):
super(MultiChannelAttention, self)._build_attention(rank) # pytype: disable=attribute-error # typed-keras super()._build_attention(rank) # pytype: disable=attribute-error # typed-keras
self._masked_softmax = masked_softmax.MaskedSoftmax(mask_expansion_axes=[2]) self._masked_softmax = masked_softmax.MaskedSoftmax(mask_expansion_axes=[2])
def call(self, def call(self,
......
...@@ -47,7 +47,7 @@ class OnDeviceEmbedding(tf.keras.layers.Layer): ...@@ -47,7 +47,7 @@ class OnDeviceEmbedding(tf.keras.layers.Layer):
scale_factor=None, scale_factor=None,
**kwargs): **kwargs):
super(OnDeviceEmbedding, self).__init__(**kwargs) super().__init__(**kwargs)
self._vocab_size = vocab_size self._vocab_size = vocab_size
self._embedding_width = embedding_width self._embedding_width = embedding_width
self._initializer = initializer self._initializer = initializer
...@@ -62,7 +62,7 @@ class OnDeviceEmbedding(tf.keras.layers.Layer): ...@@ -62,7 +62,7 @@ class OnDeviceEmbedding(tf.keras.layers.Layer):
"use_one_hot": self._use_one_hot, "use_one_hot": self._use_one_hot,
"scale_factor": self._scale_factor, "scale_factor": self._scale_factor,
} }
base_config = super(OnDeviceEmbedding, self).get_config() base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items())) return dict(list(base_config.items()) + list(config.items()))
def build(self, input_shape): def build(self, input_shape):
...@@ -72,7 +72,7 @@ class OnDeviceEmbedding(tf.keras.layers.Layer): ...@@ -72,7 +72,7 @@ class OnDeviceEmbedding(tf.keras.layers.Layer):
initializer=self._initializer, initializer=self._initializer,
dtype=tf.float32) dtype=tf.float32)
super(OnDeviceEmbedding, self).build(input_shape) super().build(input_shape)
def call(self, inputs): def call(self, inputs):
flat_inputs = tf.reshape(inputs, [-1]) flat_inputs = tf.reshape(inputs, [-1])
......
...@@ -53,7 +53,7 @@ class PositionEmbedding(tf.keras.layers.Layer): ...@@ -53,7 +53,7 @@ class PositionEmbedding(tf.keras.layers.Layer):
seq_axis=1, seq_axis=1,
**kwargs): **kwargs):
super(PositionEmbedding, self).__init__(**kwargs) super().__init__(**kwargs)
if max_length is None: if max_length is None:
raise ValueError( raise ValueError(
"`max_length` must be an Integer, not `None`." "`max_length` must be an Integer, not `None`."
...@@ -81,7 +81,7 @@ class PositionEmbedding(tf.keras.layers.Layer): ...@@ -81,7 +81,7 @@ class PositionEmbedding(tf.keras.layers.Layer):
shape=[weight_sequence_length, width], shape=[weight_sequence_length, width],
initializer=self._initializer) initializer=self._initializer)
super(PositionEmbedding, self).build(input_shape) super().build(input_shape)
def call(self, inputs): def call(self, inputs):
input_shape = tf.shape(inputs) input_shape = tf.shape(inputs)
......
...@@ -223,7 +223,7 @@ class ReuseMultiHeadAttention(tf.keras.layers.Layer): ...@@ -223,7 +223,7 @@ class ReuseMultiHeadAttention(tf.keras.layers.Layer):
kernel_constraint=None, kernel_constraint=None,
bias_constraint=None, bias_constraint=None,
**kwargs): **kwargs):
super(ReuseMultiHeadAttention, self).__init__(**kwargs) super().__init__(**kwargs)
self._num_heads = num_heads self._num_heads = num_heads
self._key_dim = key_dim self._key_dim = key_dim
self._value_dim = value_dim if value_dim else key_dim self._value_dim = value_dim if value_dim else key_dim
...@@ -301,7 +301,7 @@ class ReuseMultiHeadAttention(tf.keras.layers.Layer): ...@@ -301,7 +301,7 @@ class ReuseMultiHeadAttention(tf.keras.layers.Layer):
"key_shape": self._key_shape, "key_shape": self._key_shape,
"value_shape": self._value_shape, "value_shape": self._value_shape,
} }
base_config = super(ReuseMultiHeadAttention, self).get_config() base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items())) return dict(list(base_config.items()) + list(config.items()))
@classmethod @classmethod
......
...@@ -33,7 +33,7 @@ class TokenImportanceWithMovingAvg(tf.keras.layers.Layer): ...@@ -33,7 +33,7 @@ class TokenImportanceWithMovingAvg(tf.keras.layers.Layer):
self._vocab_size = vocab_size self._vocab_size = vocab_size
self._init_importance = init_importance self._init_importance = init_importance
self._moving_average_beta = moving_average_beta self._moving_average_beta = moving_average_beta
super(TokenImportanceWithMovingAvg, self).__init__(**kwargs) super().__init__(**kwargs)
def build(self, input_shape): def build(self, input_shape):
self._importance_embedding = self.add_weight( self._importance_embedding = self.add_weight(
...@@ -51,7 +51,7 @@ class TokenImportanceWithMovingAvg(tf.keras.layers.Layer): ...@@ -51,7 +51,7 @@ class TokenImportanceWithMovingAvg(tf.keras.layers.Layer):
"moving_average_beta": "moving_average_beta":
self._moving_average_beta, self._moving_average_beta,
} }
base_config = super(TokenImportanceWithMovingAvg, self).get_config() base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items())) return dict(list(base_config.items()) + list(config.items()))
def update_token_importance(self, token_ids, importance): def update_token_importance(self, token_ids, importance):
...@@ -80,7 +80,7 @@ class SelectTopK(tf.keras.layers.Layer): ...@@ -80,7 +80,7 @@ class SelectTopK(tf.keras.layers.Layer):
**kwargs): **kwargs):
self._top_k = top_k self._top_k = top_k
self._random_k = random_k self._random_k = random_k
super(SelectTopK, self).__init__(**kwargs) super().__init__(**kwargs)
def get_config(self): def get_config(self):
config = { config = {
...@@ -89,7 +89,7 @@ class SelectTopK(tf.keras.layers.Layer): ...@@ -89,7 +89,7 @@ class SelectTopK(tf.keras.layers.Layer):
"random_k": "random_k":
self._random_k, self._random_k,
} }
base_config = super(SelectTopK, self).get_config() base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items())) return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs): def call(self, inputs):
......
...@@ -74,11 +74,11 @@ class SpectralNormalization(tf.keras.layers.Wrapper): ...@@ -74,11 +74,11 @@ class SpectralNormalization(tf.keras.layers.Wrapper):
if not isinstance(layer, tf.keras.layers.Layer): if not isinstance(layer, tf.keras.layers.Layer):
raise ValueError('`layer` must be a `tf.keras.layer.Layer`. ' raise ValueError('`layer` must be a `tf.keras.layer.Layer`. '
'Observed `{}`'.format(layer)) 'Observed `{}`'.format(layer))
super(SpectralNormalization, self).__init__( super().__init__(
layer, name=wrapper_name, **kwargs) layer, name=wrapper_name, **kwargs)
def build(self, input_shape): def build(self, input_shape):
super(SpectralNormalization, self).build(input_shape) super().build(input_shape)
self.layer.kernel._aggregation = self.aggregation # pylint: disable=protected-access self.layer.kernel._aggregation = self.aggregation # pylint: disable=protected-access
self._dtype = self.layer.kernel.dtype self._dtype = self.layer.kernel.dtype
...@@ -193,7 +193,7 @@ class SpectralNormalizationConv2D(tf.keras.layers.Wrapper): ...@@ -193,7 +193,7 @@ class SpectralNormalizationConv2D(tf.keras.layers.Wrapper):
raise ValueError( raise ValueError(
'layer must be a `tf.keras.layer.Conv2D` instance. You passed: {input}' 'layer must be a `tf.keras.layer.Conv2D` instance. You passed: {input}'
.format(input=layer)) .format(input=layer))
super(SpectralNormalizationConv2D, self).__init__(layer, **kwargs) super().__init__(layer, **kwargs)
def build(self, input_shape): def build(self, input_shape):
if not self.layer.built: if not self.layer.built:
...@@ -238,7 +238,7 @@ class SpectralNormalizationConv2D(tf.keras.layers.Wrapper): ...@@ -238,7 +238,7 @@ class SpectralNormalizationConv2D(tf.keras.layers.Wrapper):
dtype=self.dtype, dtype=self.dtype,
aggregation=self.aggregation) aggregation=self.aggregation)
super(SpectralNormalizationConv2D, self).build() super().build()
def call(self, inputs): def call(self, inputs):
u_update_op, v_update_op, w_update_op = self.update_weights() u_update_op, v_update_op, w_update_op = self.update_weights()
......
...@@ -66,7 +66,7 @@ class TNExpandCondense(Layer): ...@@ -66,7 +66,7 @@ class TNExpandCondense(Layer):
if 'input_shape' not in kwargs and 'input_dim' in kwargs: if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),) kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(TNExpandCondense, self).__init__(**kwargs) super().__init__(**kwargs)
assert proj_multiplier in [ assert proj_multiplier in [
2, 4, 6, 8, 10, 12 2, 4, 6, 8, 10, 12
...@@ -86,7 +86,7 @@ class TNExpandCondense(Layer): ...@@ -86,7 +86,7 @@ class TNExpandCondense(Layer):
'The last dimension of the inputs to `TNExpandCondense` ' 'The last dimension of the inputs to `TNExpandCondense` '
'should be defined. Found `None`.') 'should be defined. Found `None`.')
super(TNExpandCondense, self).build(input_shape) super().build(input_shape)
self.proj_size = self.proj_multiplier * input_shape[-1] self.proj_size = self.proj_multiplier * input_shape[-1]
...@@ -178,5 +178,5 @@ class TNExpandCondense(Layer): ...@@ -178,5 +178,5 @@ class TNExpandCondense(Layer):
getattr(self, initializer_arg)) getattr(self, initializer_arg))
# Get base config # Get base config
base_config = super(TNExpandCondense, self).get_config() base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items())) return dict(list(base_config.items()) + list(config.items()))
...@@ -78,7 +78,7 @@ class TNTransformerExpandCondense(tf.keras.layers.Layer): ...@@ -78,7 +78,7 @@ class TNTransformerExpandCondense(tf.keras.layers.Layer):
intermediate_dropout=0.0, intermediate_dropout=0.0,
attention_initializer=None, attention_initializer=None,
**kwargs): **kwargs):
super(TNTransformerExpandCondense, self).__init__(**kwargs) super().__init__(**kwargs)
self._num_heads = num_attention_heads self._num_heads = num_attention_heads
self._intermediate_size = intermediate_size self._intermediate_size = intermediate_size
...@@ -170,7 +170,7 @@ class TNTransformerExpandCondense(tf.keras.layers.Layer): ...@@ -170,7 +170,7 @@ class TNTransformerExpandCondense(tf.keras.layers.Layer):
epsilon=self._norm_epsilon, epsilon=self._norm_epsilon,
dtype=tf.float32) dtype=tf.float32)
super(TNTransformerExpandCondense, self).build(input_shape) super().build(input_shape)
def get_config(self): def get_config(self):
config = { config = {
...@@ -211,7 +211,7 @@ class TNTransformerExpandCondense(tf.keras.layers.Layer): ...@@ -211,7 +211,7 @@ class TNTransformerExpandCondense(tf.keras.layers.Layer):
"attention_initializer": "attention_initializer":
tf.keras.initializers.serialize(self._attention_initializer) tf.keras.initializers.serialize(self._attention_initializer)
} }
base_config = super(TNTransformerExpandCondense, self).get_config() base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items())) return dict(list(base_config.items()) + list(config.items()))
def call(self, inputs): def call(self, inputs):
......
...@@ -103,7 +103,7 @@ class TransformerXLBlock(tf.keras.layers.Layer): ...@@ -103,7 +103,7 @@ class TransformerXLBlock(tf.keras.layers.Layer):
**kwargs): **kwargs):
"""Initializes TransformerXLBlock layer.""" """Initializes TransformerXLBlock layer."""
super(TransformerXLBlock, self).__init__(**kwargs) super().__init__(**kwargs)
self._vocab_size = vocab_size self._vocab_size = vocab_size
self._num_heads = num_attention_heads self._num_heads = num_attention_heads
self._head_size = head_size self._head_size = head_size
...@@ -181,7 +181,7 @@ class TransformerXLBlock(tf.keras.layers.Layer): ...@@ -181,7 +181,7 @@ class TransformerXLBlock(tf.keras.layers.Layer):
axis=-1, axis=-1,
epsilon=self._norm_epsilon) epsilon=self._norm_epsilon)
super(TransformerXLBlock, self).build(input_shape) super().build(input_shape)
def get_config(self): def get_config(self):
config = { config = {
...@@ -210,7 +210,7 @@ class TransformerXLBlock(tf.keras.layers.Layer): ...@@ -210,7 +210,7 @@ class TransformerXLBlock(tf.keras.layers.Layer):
"inner_dropout": "inner_dropout":
self._inner_dropout, self._inner_dropout,
} }
base_config = super(TransformerXLBlock, self).get_config() base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items())) return dict(list(base_config.items()) + list(config.items()))
def call(self, def call(self,
...@@ -371,7 +371,7 @@ class TransformerXL(tf.keras.layers.Layer): ...@@ -371,7 +371,7 @@ class TransformerXL(tf.keras.layers.Layer):
inner_activation="relu", inner_activation="relu",
**kwargs): **kwargs):
"""Initializes TransformerXL.""" """Initializes TransformerXL."""
super(TransformerXL, self).__init__(**kwargs) super().__init__(**kwargs)
self._vocab_size = vocab_size self._vocab_size = vocab_size
self._initializer = initializer self._initializer = initializer
...@@ -461,7 +461,7 @@ class TransformerXL(tf.keras.layers.Layer): ...@@ -461,7 +461,7 @@ class TransformerXL(tf.keras.layers.Layer):
"inner_activation": "inner_activation":
self._inner_activation, self._inner_activation,
} }
base_config = super(TransformerXL, self).get_config() base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items())) return dict(list(base_config.items()) + list(config.items()))
def call(self, def call(self,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment