Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
5072a869
Commit
5072a869
authored
Oct 12, 2021
by
A. Unique TensorFlower
Browse files
Internal change
PiperOrigin-RevId: 402725910
parent
fdbf4946
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
10 additions
and
2 deletions
+10
-2
official/vision/beta/modeling/heads/dense_prediction_heads.py
...cial/vision/beta/modeling/heads/dense_prediction_heads.py
+10
-2
No files found.
official/vision/beta/modeling/heads/dense_prediction_heads.py
View file @
5072a869
...
@@ -44,6 +44,7 @@ class RetinaNetHead(tf.keras.layers.Layer):
...
@@ -44,6 +44,7 @@ class RetinaNetHead(tf.keras.layers.Layer):
norm_epsilon
:
float
=
0.001
,
norm_epsilon
:
float
=
0.001
,
kernel_regularizer
:
Optional
[
tf
.
keras
.
regularizers
.
Regularizer
]
=
None
,
kernel_regularizer
:
Optional
[
tf
.
keras
.
regularizers
.
Regularizer
]
=
None
,
bias_regularizer
:
Optional
[
tf
.
keras
.
regularizers
.
Regularizer
]
=
None
,
bias_regularizer
:
Optional
[
tf
.
keras
.
regularizers
.
Regularizer
]
=
None
,
num_params_per_anchor
:
int
=
4
,
**
kwargs
):
**
kwargs
):
"""Initializes a RetinaNet head.
"""Initializes a RetinaNet head.
...
@@ -72,6 +73,10 @@ class RetinaNetHead(tf.keras.layers.Layer):
...
@@ -72,6 +73,10 @@ class RetinaNetHead(tf.keras.layers.Layer):
kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
kernel_regularizer: A `tf.keras.regularizers.Regularizer` object for
Conv2D. Default is None.
Conv2D. Default is None.
bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
bias_regularizer: A `tf.keras.regularizers.Regularizer` object for Conv2D.
num_params_per_anchor: Number of parameters required to specify an anchor
box. For example, `num_params_per_anchor` would be 4 for axis-aligned
anchor boxes specified by their y-centers, x-centers, heights, and
widths.
**kwargs: Additional keyword arguments to be passed.
**kwargs: Additional keyword arguments to be passed.
"""
"""
super
(
RetinaNetHead
,
self
).
__init__
(
**
kwargs
)
super
(
RetinaNetHead
,
self
).
__init__
(
**
kwargs
)
...
@@ -90,6 +95,7 @@ class RetinaNetHead(tf.keras.layers.Layer):
...
@@ -90,6 +95,7 @@ class RetinaNetHead(tf.keras.layers.Layer):
'norm_epsilon'
:
norm_epsilon
,
'norm_epsilon'
:
norm_epsilon
,
'kernel_regularizer'
:
kernel_regularizer
,
'kernel_regularizer'
:
kernel_regularizer
,
'bias_regularizer'
:
bias_regularizer
,
'bias_regularizer'
:
bias_regularizer
,
'num_params_per_anchor'
:
num_params_per_anchor
,
}
}
if
tf
.
keras
.
backend
.
image_data_format
()
==
'channels_last'
:
if
tf
.
keras
.
backend
.
image_data_format
()
==
'channels_last'
:
...
@@ -170,7 +176,8 @@ class RetinaNetHead(tf.keras.layers.Layer):
...
@@ -170,7 +176,8 @@ class RetinaNetHead(tf.keras.layers.Layer):
self
.
_box_norms
.
append
(
this_level_box_norms
)
self
.
_box_norms
.
append
(
this_level_box_norms
)
box_regressor_kwargs
=
{
box_regressor_kwargs
=
{
'filters'
:
4
*
self
.
_config_dict
[
'num_anchors_per_location'
],
'filters'
:
(
self
.
_config_dict
[
'num_params_per_anchor'
]
*
self
.
_config_dict
[
'num_anchors_per_location'
]),
'kernel_size'
:
3
,
'kernel_size'
:
3
,
'padding'
:
'same'
,
'padding'
:
'same'
,
'bias_initializer'
:
tf
.
zeros_initializer
(),
'bias_initializer'
:
tf
.
zeros_initializer
(),
...
@@ -265,7 +272,8 @@ class RetinaNetHead(tf.keras.layers.Layer):
...
@@ -265,7 +272,8 @@ class RetinaNetHead(tf.keras.layers.Layer):
- key: A `str` of the level of the multilevel predictions.
- key: A `str` of the level of the multilevel predictions.
- values: A `tf.Tensor` of the box scores predicted from a particular
- values: A `tf.Tensor` of the box scores predicted from a particular
feature level, whose shape is
feature level, whose shape is
[batch, height_l, width_l, 4 * num_anchors_per_location].
[batch, height_l, width_l,
num_params_per_anchor * num_anchors_per_location].
attributes: a dict of (attribute_name, attribute_prediction). Each
attributes: a dict of (attribute_name, attribute_prediction). Each
`attribute_prediction` is a dict of:
`attribute_prediction` is a dict of:
- key: `str`, the level of the multilevel predictions.
- key: `str`, the level of the multilevel predictions.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment