Unverified Commit 4f8826ac authored by srihari-humbarwadi's avatar srihari-humbarwadi
Browse files

rename output tensor keys

parent a6c6089b
...@@ -381,7 +381,7 @@ class InstanceHead(PanopticDeeplabHead): ...@@ -381,7 +381,7 @@ class InstanceHead(PanopticDeeplabHead):
"""Creates the variables of the instance head.""" """Creates the variables of the instance head."""
super(InstanceHead, self).build(input_shape) super(InstanceHead, self).build(input_shape)
self._instance_center_prediction_conv = tf.keras.layers.Conv2D( self._instance_center_prediction_conv = tf.keras.layers.Conv2D(
name='instance_center_prediction', name='instance_centers_heatmap',
filters=1, filters=1,
kernel_size=self._config_dict['prediction_kernel_size'], kernel_size=self._config_dict['prediction_kernel_size'],
padding='same', padding='same',
...@@ -391,7 +391,7 @@ class InstanceHead(PanopticDeeplabHead): ...@@ -391,7 +391,7 @@ class InstanceHead(PanopticDeeplabHead):
bias_regularizer=self._config_dict['bias_regularizer']) bias_regularizer=self._config_dict['bias_regularizer'])
self._instance_center_regression_conv = tf.keras.layers.Conv2D( self._instance_center_regression_conv = tf.keras.layers.Conv2D(
name='instance_center_regression', name='instance_centers_offset',
filters=2, filters=2,
kernel_size=self._config_dict['prediction_kernel_size'], kernel_size=self._config_dict['prediction_kernel_size'],
padding='same', padding='same',
...@@ -409,10 +409,10 @@ class InstanceHead(PanopticDeeplabHead): ...@@ -409,10 +409,10 @@ class InstanceHead(PanopticDeeplabHead):
training = tf.keras.backend.learning_phase() training = tf.keras.backend.learning_phase()
x = super(InstanceHead, self).call(inputs, training=training) x = super(InstanceHead, self).call(inputs, training=training)
instance_center_prediction = self._instance_center_prediction_conv(x) instance_centers_heatmap = self._instance_center_prediction_conv(x)
instance_center_regression = self._instance_center_regression_conv(x) instance_centers_offset = self._instance_center_regression_conv(x)
outputs = { outputs = {
'instance_center_prediction': instance_center_prediction, 'instance_centers_heatmap': instance_centers_heatmap,
'instance_center_regression': instance_center_regression 'instance_centers_offset': instance_centers_offset
} }
return outputs return outputs
...@@ -71,10 +71,10 @@ class PanopticDeeplabHeadsTest(parameterized.TestCase, tf.test.TestCase): ...@@ -71,10 +71,10 @@ class PanopticDeeplabHeadsTest(parameterized.TestCase, tf.test.TestCase):
semantic_outputs.numpy().shape, semantic_outputs.numpy().shape,
[2, h, w, num_classes]) [2, h, w, num_classes])
self.assertAllEqual( self.assertAllEqual(
instance_outputs['instance_center_prediction'].numpy().shape, instance_outputs['instance_centers_heatmap'].numpy().shape,
[2, h, w, 1]) [2, h, w, 1])
self.assertAllEqual( self.assertAllEqual(
instance_outputs['instance_center_regression'].numpy().shape, instance_outputs['instance_centers_offset'].numpy().shape,
[2, h, w, 2]) [2, h, w, 2])
......
...@@ -41,6 +41,11 @@ class PanopticDeeplabNetworkTest(parameterized.TestCase, tf.test.TestCase): ...@@ -41,6 +41,11 @@ class PanopticDeeplabNetworkTest(parameterized.TestCase, tf.test.TestCase):
batch_size = 2 if training else 1 batch_size = 2 if training else 1
num_classes = 10 num_classes = 10
inputs = np.random.rand(batch_size, input_size, input_size, 3) inputs = np.random.rand(batch_size, input_size, input_size, 3)
image_info = tf.convert_to_tensor(
[[[input_size, input_size], [input_size, input_size], [1, 1], [0, 0]]])
image_info = tf.tile(image_info, [batch_size, 1, 1])
tf.keras.backend.set_image_data_format('channels_last') tf.keras.backend.set_image_data_format('channels_last')
backbone = backbones.ResNet(model_id=50) backbone = backbones.ResNet(model_id=50)
...@@ -65,13 +70,15 @@ class PanopticDeeplabNetworkTest(parameterized.TestCase, tf.test.TestCase): ...@@ -65,13 +70,15 @@ class PanopticDeeplabNetworkTest(parameterized.TestCase, tf.test.TestCase):
low_level_num_filters=(64, 32)) low_level_num_filters=(64, 32))
post_processor = panoptic_deeplab_merge.PostProcessor( post_processor = panoptic_deeplab_merge.PostProcessor(
output_size=[input_size, input_size],
center_score_threshold=0.1, center_score_threshold=0.1,
thing_class_ids=[1, 2, 3, 4], thing_class_ids=[1, 2, 3, 4],
label_divisor=[256], label_divisor=[256],
stuff_area_limit=4096, stuff_area_limit=4096,
ignore_label=0, ignore_label=0,
nms_kernel=41, nms_kernel=41,
keep_k_centers=41) keep_k_centers=41,
rescale_predictions=True)
model = panoptic_deeplab_model.PanopticDeeplabModel( model = panoptic_deeplab_model.PanopticDeeplabModel(
backbone=backbone, backbone=backbone,
...@@ -81,12 +88,15 @@ class PanopticDeeplabNetworkTest(parameterized.TestCase, tf.test.TestCase): ...@@ -81,12 +88,15 @@ class PanopticDeeplabNetworkTest(parameterized.TestCase, tf.test.TestCase):
instance_head=instance_head, instance_head=instance_head,
post_processor=post_processor) post_processor=post_processor)
outputs = model(inputs, training=training) outputs = model(
inputs=inputs,
image_info=image_info,
training=training)
if training: if training:
self.assertIn('segmentation_outputs', outputs) self.assertIn('segmentation_outputs', outputs)
self.assertIn('instance_center_prediction', outputs) self.assertIn('instance_centers_heatmap', outputs)
self.assertIn('instance_center_regression', outputs) self.assertIn('instance_centers_offset', outputs)
self.assertAllEqual( self.assertAllEqual(
[2, input_size // (2**low_level[-1]), [2, input_size // (2**low_level[-1]),
...@@ -97,12 +107,12 @@ class PanopticDeeplabNetworkTest(parameterized.TestCase, tf.test.TestCase): ...@@ -97,12 +107,12 @@ class PanopticDeeplabNetworkTest(parameterized.TestCase, tf.test.TestCase):
[2, input_size // (2**low_level[-1]), [2, input_size // (2**low_level[-1]),
input_size // (2**low_level[-1]), input_size // (2**low_level[-1]),
1], 1],
outputs['instance_center_prediction'].numpy().shape) outputs['instance_centers_heatmap'].numpy().shape)
self.assertAllEqual( self.assertAllEqual(
[2, input_size // (2**low_level[-1]), [2, input_size // (2**low_level[-1]),
input_size // (2**low_level[-1]), input_size // (2**low_level[-1]),
2], 2],
outputs['instance_center_regression'].numpy().shape) outputs['instance_centers_offset'].numpy().shape)
else: else:
self.assertIn('panoptic_outputs', outputs) self.assertIn('panoptic_outputs', outputs)
...@@ -110,6 +120,8 @@ class PanopticDeeplabNetworkTest(parameterized.TestCase, tf.test.TestCase): ...@@ -110,6 +120,8 @@ class PanopticDeeplabNetworkTest(parameterized.TestCase, tf.test.TestCase):
self.assertIn('instance_mask', outputs) self.assertIn('instance_mask', outputs)
self.assertIn('instance_centers', outputs) self.assertIn('instance_centers', outputs)
self.assertIn('instance_scores', outputs) self.assertIn('instance_scores', outputs)
self.assertIn('segmentation_outputs', outputs)
@combinations.generate( @combinations.generate(
combinations.combine( combinations.combine(
...@@ -142,13 +154,15 @@ class PanopticDeeplabNetworkTest(parameterized.TestCase, tf.test.TestCase): ...@@ -142,13 +154,15 @@ class PanopticDeeplabNetworkTest(parameterized.TestCase, tf.test.TestCase):
low_level_num_filters=(64, 32)) low_level_num_filters=(64, 32))
post_processor = panoptic_deeplab_merge.PostProcessor( post_processor = panoptic_deeplab_merge.PostProcessor(
output_size=[640, 640],
center_score_threshold=0.1, center_score_threshold=0.1,
thing_class_ids=[1, 2, 3, 4], thing_class_ids=[1, 2, 3, 4],
label_divisor=[256], label_divisor=[256],
stuff_area_limit=4096, stuff_area_limit=4096,
ignore_label=0, ignore_label=0,
nms_kernel=41, nms_kernel=41,
keep_k_centers=41) keep_k_centers=41,
rescale_predictions=True)
model = panoptic_deeplab_model.PanopticDeeplabModel( model = panoptic_deeplab_model.PanopticDeeplabModel(
backbone=backbone, backbone=backbone,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment