"...sglang/srt/git@developer.sourcefind.cn:change/sglang.git" did not exist on "6b231325b9782555eb8e1cfcf27820003a98382b"
Commit 4c872f63 authored by Sai Ganesh Bandiatmakuri's avatar Sai Ganesh Bandiatmakuri Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 281846531
parent 275afa5c
# Lint as: python3
"""Utils to annotate and trace benchmarks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
from absl import logging
from absl.testing import flagsaver
FLAGS = flags.FLAGS
flags.DEFINE_multi_string(
'benchmark_method_flags', None,
'Optional list of runtime flags of the form key=value. Specify '
'multiple times to specify different flags. These will override the FLAGS '
'object directly after hardcoded settings in individual benchmark methods '
'before they call _run_and_report benchmark. Example if we set '
'--benchmark_method_flags=train_steps=10 and a benchmark method hardcodes '
'FLAGS.train_steps=10000 and later calls _run_and_report_benchmark, '
'it\'ll only run for 10 steps. This is useful for '
'debugging/profiling workflows.')
def enable_runtime_flags(decorated_func):
"""Sets attributes from --benchmark_method_flags for method execution.
@enable_runtime_flags decorator temporarily adds flags passed in via
--benchmark_method_flags and runs the decorated function in that context.
A user can set --benchmark_method_flags=train_steps=5 to run the benchmark
method in the snippet below with FLAGS.train_steps=5 for debugging (without
modifying the benchmark code).
class ModelBenchmark():
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self):
# run benchmark ...
# report benchmark results ...
def benchmark_method(self):
FLAGS.train_steps = 1000
...
self._run_and_report_benchmark()
Args:
decorated_func: The method that runs the benchmark after previous setup
execution that set some flags.
Returns:
new_func: The same method which executes in a temporary context where flag
overrides from --benchmark_method_flags are active.
"""
def runner(*args, **kwargs):
"""Creates a temporary context to activate --benchmark_method_flags."""
if FLAGS.benchmark_method_flags:
saved_flag_values = flagsaver.save_flag_values()
for key_value in FLAGS.benchmark_method_flags:
key, value = key_value.split('=', 1)
try:
numeric_float = float(value)
numeric_int = int(numeric_float)
if abs(numeric_int) == abs(numeric_float):
flag_value = numeric_int
else:
flag_value = numeric_float
except ValueError:
flag_value = value
logging.info('Setting --%s=%s', key, flag_value)
setattr(FLAGS, key, flag_value)
else:
saved_flag_values = None
try:
result = decorated_func(*args, **kwargs)
return result
finally:
if saved_flag_values:
flagsaver.restore_flag_values(saved_flag_values)
return runner
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment