Commit 44811ca2 authored by Hongkun Yu's avatar Hongkun Yu Committed by A. Unique TensorFlower
Browse files

Remove legacy models in the readmes.

Update nlp/README.md according to the update in vision/.

PiperOrigin-RevId: 442428156
parent 704a3fda
...@@ -38,16 +38,15 @@ In the near future, we will add: ...@@ -38,16 +38,15 @@ In the near future, we will add:
## Models and Implementations ## Models and Implementations
### Computer Vision ### [Computer Vision](vision/README.md)
#### Image Classification #### Image Classification
| Model | Reference (Paper) | | Model | Reference (Paper) |
|-------|-------------------| |-------|-------------------|
| [MNIST](legacy/image_classification) | A basic model to classify digits from the [MNIST dataset](http://yann.lecun.com/exdb/mnist/) |
| [ResNet](vision/MODEL_GARDEN.md) | [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) | | [ResNet](vision/MODEL_GARDEN.md) | [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) |
| [ResNet-RS](vision/MODEL_GARDEN.md) | [Revisiting ResNets: Improved Training and Scaling Strategies](https://arxiv.org/abs/2103.07579) | | [ResNet-RS](vision/MODEL_GARDEN.md) | [Revisiting ResNets: Improved Training and Scaling Strategies](https://arxiv.org/abs/2103.07579) |
| [EfficientNet](legacy/image_classification) | [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) | | [EfficientNet](vision/MODEL_GARDEN.md) | [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) |
| [Vision Transformer](vision/MODEL_GARDEN.md) | [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) | | [Vision Transformer](vision/MODEL_GARDEN.md) | [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) |
#### Object Detection and Segmentation #### Object Detection and Segmentation
...@@ -56,7 +55,6 @@ In the near future, we will add: ...@@ -56,7 +55,6 @@ In the near future, we will add:
|-------|-------------------| |-------|-------------------|
| [RetinaNet](vision/MODEL_GARDEN.md) | [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002) | | [RetinaNet](vision/MODEL_GARDEN.md) | [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002) |
| [Mask R-CNN](vision/MODEL_GARDEN.md) | [Mask R-CNN](https://arxiv.org/abs/1703.06870) | | [Mask R-CNN](vision/MODEL_GARDEN.md) | [Mask R-CNN](https://arxiv.org/abs/1703.06870) |
| [ShapeMask](legacy/detection) | [ShapeMask: Learning to Segment Novel Objects by Refining Shape Priors](https://arxiv.org/abs/1904.03239) |
| [SpineNet](vision/MODEL_GARDEN.md) | [SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization](https://arxiv.org/abs/1912.05027) | | [SpineNet](vision/MODEL_GARDEN.md) | [SpineNet: Learning Scale-Permuted Backbone for Recognition and Localization](https://arxiv.org/abs/1912.05027) |
| [Cascade RCNN-RS and RetinaNet-RS](vision/MODEL_GARDEN.md) | [Simple Training Strategies and Model Scaling for Object Detection](https://arxiv.org/abs/2107.00057)| | [Cascade RCNN-RS and RetinaNet-RS](vision/MODEL_GARDEN.md) | [Simple Training Strategies and Model Scaling for Object Detection](https://arxiv.org/abs/2107.00057)|
...@@ -66,7 +64,7 @@ In the near future, we will add: ...@@ -66,7 +64,7 @@ In the near future, we will add:
|-------|-------------------| |-------|-------------------|
| [Mobile Video Networks (MoViNets)](projects/movinet) | [MoViNets: Mobile Video Networks for Efficient Video Recognition](https://arxiv.org/abs/2103.11511) | | [Mobile Video Networks (MoViNets)](projects/movinet) | [MoViNets: Mobile Video Networks for Efficient Video Recognition](https://arxiv.org/abs/2103.11511) |
### Natural Language Processing ### [Natural Language Processing](nlp/README.md)
| Model | Reference (Paper) | | Model | Reference (Paper) |
|-------|-------------------| |-------|-------------------|
...@@ -74,7 +72,6 @@ In the near future, we will add: ...@@ -74,7 +72,6 @@ In the near future, we will add:
| [BERT (Bidirectional Encoder Representations from Transformers)](nlp/MODEL_GARDEN.md#available-model-configs) | [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) | | [BERT (Bidirectional Encoder Representations from Transformers)](nlp/MODEL_GARDEN.md#available-model-configs) | [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) |
| [NHNet (News Headline generation model)](projects/nhnet) | [Generating Representative Headlines for News Stories](https://arxiv.org/abs/2001.09386) | | [NHNet (News Headline generation model)](projects/nhnet) | [Generating Representative Headlines for News Stories](https://arxiv.org/abs/2001.09386) |
| [Transformer](nlp/MODEL_GARDEN.md#available-model-configs) | [Attention Is All You Need](https://arxiv.org/abs/1706.03762) | | [Transformer](nlp/MODEL_GARDEN.md#available-model-configs) | [Attention Is All You Need](https://arxiv.org/abs/1706.03762) |
| [XLNet](nlp/xlnet) | [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) |
| [MobileBERT](projects/mobilebert) | [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) | | [MobileBERT](projects/mobilebert) | [MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices](https://arxiv.org/abs/2004.02984) |
### Recommendation ### Recommendation
......
# TensorFlow NLP Modelling Toolkit # TF-NLP Model Garden
⚠️ Disclaimer: All datasets hyperlinked from this page are not owned or
distributed by Google. The dataset is made available by third parties.
Please review the terms and conditions made available by the third parties
before using the data.
This codebase provides a Natrual Language Processing modeling toolkit written in This codebase provides a Natrual Language Processing modeling toolkit written in
[TF2](https://www.tensorflow.org/guide/effective_tf2). It allows researchers and [TF2](https://www.tensorflow.org/guide/effective_tf2). It allows researchers and
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment