"examples/vscode:/vscode.git/clone" did not exist on "0018e90c5ae3e1337fbac4d52adf3a6252720827"
Commit 4053c2ba authored by saberkun's avatar saberkun
Browse files

Merge pull request #10514 from ZihanWangKi:master

PiperOrigin-RevId: 436548878
parents f9f2765d 259c4347
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3
"""Common modules for callbacks.""" """Common modules for callbacks."""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
......
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3
"""Runs an Image Classification model.""" """Runs an Image Classification model."""
import os import os
......
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3
"""Unit tests for the classifier trainer models.""" """Unit tests for the classifier trainer models."""
import functools import functools
......
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3
"""Unit tests for the classifier trainer models.""" """Unit tests for the classifier trainer models."""
from __future__ import absolute_import from __future__ import absolute_import
......
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3
"""Dataset utilities for vision tasks using TFDS and tf.data.Dataset.""" """Dataset utilities for vision tasks using TFDS and tf.data.Dataset."""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
......
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3
"""Learning rate utilities for vision tasks.""" """Learning rate utilities for vision tasks."""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
......
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3
"""Contains definitions for the AssembleNet [1] models. """Contains definitions for the AssembleNet [1] models.
Requires the AssembleNet architecture to be specified in Requires the AssembleNet architecture to be specified in
......
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3
"""Contains definitions for 'Representation Flow' layer [1]. """Contains definitions for 'Representation Flow' layer [1].
Representation flow layer is a generalization of optical flow extraction; the Representation flow layer is a generalization of optical flow extraction; the
......
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3
"""Detection input and model functions for serving/inference.""" """Detection input and model functions for serving/inference."""
from typing import Dict, Mapping, Text from typing import Dict, Mapping, Text
......
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3
"""Test for image detection export lib.""" """Test for image detection export lib."""
import io import io
......
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3
"""Tests for image classification task.""" """Tests for image classification task."""
# pylint: disable=unused-import # pylint: disable=unused-import
......
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# Lint as: python3
"""Tests for semantic segmentation task.""" """Tests for semantic segmentation task."""
# pylint: disable=unused-import # pylint: disable=unused-import
......
# Longformer: The Long-Document Transformer
## Modifications from Huggingface's Implementation
All models require a `global_attention_size` specified in the config, setting a
global attention for all first `global_attention_size` tokens in any sentence.
Individual different global attention sizes for sentences are not supported.
This setting allows running on TPUs where tensor sizes have to be determined.
`_get_global_attn_indices` in `longformer_attention.py` contains how the new
global attention indices are specified. Changed all `tf.cond` to if
confiditions, since global attention is specified in the start now.
To load weights from a pre-trained huggingface longformer, run
`utils/convert_pretrained_pytorch_checkpoint_to_tf.py` to create a checkpoint. \
There is also a `utils/longformer_tokenizer_to_tfrecord.py` that transformers
pytorch longformer tokenized data to tf_records.
## Steps to Fine-tune on MNLI
#### Prepare the pre-trained checkpoint
Option 1. Use our saved checkpoint of `allenai/longformer-base-4096` stored in cloud storage
```bash
gsutil cp -r gs://model-garden-ucsd-zihan/longformer-4096 .
```
Option 2. Create it directly
```bash
python3 utils/convert_pretrained_pytorch_checkpoint_to_tf.py
```
#### [Optional] Prepare the input file
```bash
python3 longformer_tokenizer_to_tfrecord.py
```
#### Training
Here, we use the training data of MNLI that were uploaded to the cloud storage, you can replace it with the input files you generated.
```bash
TRAIN_DATA=task.train_data.input_path=gs://model-garden-ucsd-zihan/longformer_allenai_mnli_train.tf_record,task.validation_data.input_path=gs://model-garden-ucsd-zihan/longformer_allenai_mnli_eval.tf_record
INIT_CHECKPOINT=longformer-4096/longformer
PYTHONPATH=/path/to/model/garden \
python3 train.py \
--experiment=longformer/glue \
--config_file=experiments/glue_mnli_allenai.yaml \
--params_override="${TRAIN_DATA},runtime.distribution_strategy=tpu,task.init_checkpoint=${INIT_CHECKPOINT}" \
--tpu=local \
--model_dir=/path/to/outputdir \
--mode=train_and_eval
```
This should take ~ 3 hours to run, and give a performance of ~86.
task:
hub_module_url: ''
model:
num_classes: 3
encoder:
type: any
any:
max_position_embeddings: 512
attention_window: [32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32]
global_attention_size: 1
metric_type: 'accuracy'
train_data:
drop_remainder: true
global_batch_size: 32
input_path: TODO
is_training: true
seq_length: 128
validation_data:
drop_remainder: true
global_batch_size: 32
input_path: TODO
is_training: false
seq_length: 128
trainer:
checkpoint_interval: 1000
continuous_eval_timeout: 7200
optimizer_config:
learning_rate:
polynomial:
decay_steps: 61359
end_learning_rate: 0.0
initial_learning_rate: 3.0e-05
power: 1.0
type: polynomial
optimizer:
type: adamw
warmup:
polynomial:
power: 1
warmup_steps: 6136
type: polynomial
steps_per_loop: 100
summary_interval: 100
# Training data size 392,702 examples, 5 epochs.
train_steps: 61359
validation_interval: 2000
validation_steps: 307
task:
hub_module_url: ''
model:
num_classes: 3
encoder:
type: any
any:
max_position_embeddings: 4098
attention_window: [128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128]
global_attention_size: 1
vocab_size: 50265
metric_type: 'accuracy'
train_data:
drop_remainder: true
global_batch_size: 32
input_path: TODO
is_training: true
seq_length: 512
validation_data:
drop_remainder: true
global_batch_size: 32
input_path: TODO
is_training: false
seq_length: 512
trainer:
checkpoint_interval: 1000
continuous_eval_timeout: 7200
optimizer_config:
learning_rate:
polynomial:
decay_steps: 61359
end_learning_rate: 0.0
initial_learning_rate: 3.0e-05
power: 1.0
type: polynomial
optimizer:
type: adamw
warmup:
polynomial:
power: 1
warmup_steps: 6136
type: polynomial
steps_per_loop: 1000
summary_interval: 1000
# Training data size 392,702 examples, 5 epochs.
train_steps: 61359
validation_interval: 2000
validation_steps: 307
This diff is collapsed.
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Longformer model configurations and instantiation methods."""
import dataclasses
from typing import List
import tensorflow as tf
from official.modeling import tf_utils
from official.modeling.hyperparams import base_config
from official.nlp.configs import encoders
from official.projects.longformer.longformer_encoder import LongformerEncoder
@dataclasses.dataclass
class LongformerEncoderConfig(encoders.BertEncoderConfig):
"""Extra paramerters for Longformer configs.
Attributes:
attention_window: list of ints representing the window size for each layer.
global_attention_size: the size of global attention used for each token.
pad_token_id: the token id for the pad token
"""
attention_window: List[int] = dataclasses.field(default_factory=list)
global_attention_size: int = 0
pad_token_id: int = 1
@base_config.bind(LongformerEncoderConfig)
def get_encoder(encoder_cfg: LongformerEncoderConfig):
"""Gets a 'LongformerEncoder' object.
Args:
encoder_cfg: A 'LongformerEncoderConfig'.
Returns:
A encoder object.
"""
encoder = LongformerEncoder(
attention_window=encoder_cfg.attention_window,
global_attention_size=encoder_cfg.global_attention_size,
vocab_size=encoder_cfg.vocab_size,
hidden_size=encoder_cfg.hidden_size,
num_layers=encoder_cfg.num_layers,
num_attention_heads=encoder_cfg.num_attention_heads,
inner_dim=encoder_cfg.intermediate_size,
inner_activation=tf_utils.get_activation(encoder_cfg.hidden_activation),
output_dropout=encoder_cfg.dropout_rate,
attention_dropout=encoder_cfg.attention_dropout_rate,
max_sequence_length=encoder_cfg.max_position_embeddings,
type_vocab_size=encoder_cfg.type_vocab_size,
initializer=tf.keras.initializers.TruncatedNormal(
stddev=encoder_cfg.initializer_range),
output_range=encoder_cfg.output_range,
embedding_width=encoder_cfg.embedding_size,
norm_first=encoder_cfg.norm_first)
return encoder
This diff is collapsed.
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for official.nlp.projects.longformer.longformer_attention."""
import numpy as np
import tensorflow as tf
from official.modeling.tf_utils import get_shape_list
from official.projects.longformer import longformer_attention
def _create_mock_attention_data(num_heads,
key_dim,
value_dim,
q_seq_length,
kv_seq_length,
batch_size,
include_mask=False):
"""Creates mock testing data.
Args:
num_heads: `int`, Number of attention heads.
key_dim: `int`, Size of query head.
value_dim: `int`, Size of key, value dim.
q_seq_length: `int`, query sequence length of the input.
kv_seq_length: `int`, key, value sequence length of the input.
batch_size: `int`, the batch size.
include_mask: optional `bool`, whether or not to include mask data.
Returns:
A dictionary with `str` as keys and `Tensor` as values.
"""
query_shape = (batch_size, q_seq_length, key_dim)
value_shape = (batch_size, kv_seq_length, value_dim)
data = dict(
query=tf.random.normal(shape=query_shape),
value=tf.random.normal(shape=value_shape),
key=tf.random.normal(shape=value_shape))
total_seq_length = kv_seq_length
if include_mask:
mask_shape = (batch_size, num_heads, q_seq_length, total_seq_length)
mask_data = np.random.randint(2, size=mask_shape).astype('float32')
mask_data = dict(attention_mask=mask_data)
data.update(mask_data)
return data
class LongformerAttentionTest(tf.test.TestCase):
def setUp(self):
super(LongformerAttentionTest, self).setUp()
np.random.seed(0)
tf.random.set_seed(0)
def _get_hidden_states(self):
return tf.convert_to_tensor(
[[
[
4.98332758e-01,
2.69175139e00,
-7.08081422e-03,
1.04915401e00,
-1.83476661e00,
7.67220476e-01,
2.98580543e-01,
2.84803992e-02,
],
[
-7.58357372e-01,
4.20635998e-01,
-4.04739919e-02,
1.59924145e-01,
2.05135748e00,
-1.15997978e00,
5.37166397e-01,
2.62873606e-01,
],
[
-1.69438001e00,
4.17574660e-01,
-1.49196962e00,
-1.76483717e00,
-1.94566312e-01,
-1.71183858e00,
7.72903565e-01,
-1.11557056e00,
],
[
5.44028163e-01,
2.05466114e-01,
-3.63045868e-01,
2.41865062e-01,
3.20348382e-01,
-9.05611176e-01,
-1.92690727e-01,
-1.19917547e00,
],
]],
dtype=tf.float32,
)
def test_diagonalize(self):
hidden_states = self._get_hidden_states()
hidden_states = tf.reshape(hidden_states,
(1, 8, 4)) # set seq length = 8, hidden dim = 4
chunked_hidden_states = longformer_attention.LongformerAttention._chunk(
hidden_states, window_overlap=2)
window_overlap_size = get_shape_list(chunked_hidden_states)[2]
self.assertEqual(window_overlap_size, 4)
padded_hidden_states = longformer_attention.LongformerAttention._pad_and_diagonalize(
chunked_hidden_states)
self.assertEqual(
get_shape_list(padded_hidden_states)[-1],
get_shape_list(chunked_hidden_states)[-1] + window_overlap_size - 1)
# first row => [0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000]
tf.debugging.assert_near(
padded_hidden_states[0, 0, 0, :4],
chunked_hidden_states[0, 0, 0],
rtol=1e-3)
tf.debugging.assert_near(
padded_hidden_states[0, 0, 0, 4:],
tf.zeros((3,), dtype=tf.dtypes.float32),
rtol=1e-3)
# last row => [0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629]
tf.debugging.assert_near(
padded_hidden_states[0, 0, -1, 3:],
chunked_hidden_states[0, 0, -1],
rtol=1e-3)
tf.debugging.assert_near(
padded_hidden_states[0, 0, -1, :3],
tf.zeros((3,), dtype=tf.dtypes.float32),
rtol=1e-3)
def test_pad_and_transpose_last_two_dims(self):
hidden_states = self._get_hidden_states()
self.assertTrue(get_shape_list(hidden_states), [1, 8, 4])
# pad along seq length dim
paddings = tf.constant([[0, 0], [0, 0], [0, 1], [0, 0]],
dtype=tf.dtypes.int32)
hidden_states = longformer_attention.LongformerAttention._chunk(
hidden_states, window_overlap=2)
padded_hidden_states = longformer_attention.LongformerAttention._pad_and_transpose_last_two_dims(
hidden_states, paddings)
self.assertEqual(get_shape_list(padded_hidden_states), [1, 1, 8, 5])
expected_added_dim = tf.zeros((5,), dtype=tf.dtypes.float32)
tf.debugging.assert_near(
expected_added_dim, padded_hidden_states[0, 0, -1, :], rtol=1e-6)
tf.debugging.assert_near(
hidden_states[0, 0, -1, :],
tf.reshape(padded_hidden_states, (1, -1))[0, 24:32],
rtol=1e-6)
def test_mask_invalid_locations(self):
hidden_states = self._get_hidden_states()
batch_size = 1
seq_length = 8
hidden_size = 4
hidden_states = tf.reshape(hidden_states,
(batch_size, seq_length, hidden_size))
hidden_states = longformer_attention.LongformerAttention._chunk(
hidden_states, window_overlap=2)
hid_states_1 = longformer_attention.LongformerAttention._mask_invalid_locations(
hidden_states, 1)
hid_states_2 = longformer_attention.LongformerAttention._mask_invalid_locations(
hidden_states, 2)
hid_states_3 = longformer_attention.LongformerAttention._mask_invalid_locations(
hidden_states[:, :, :, :3], 2)
hid_states_4 = longformer_attention.LongformerAttention._mask_invalid_locations(
hidden_states[:, :, 2:, :], 2)
self.assertEqual(
tf.math.reduce_sum(
tf.cast(tf.math.is_inf(hid_states_1), tf.dtypes.int32)), 8)
self.assertEqual(
tf.math.reduce_sum(
tf.cast(tf.math.is_inf(hid_states_2), tf.dtypes.int32)), 24)
self.assertEqual(
tf.math.reduce_sum(
tf.cast(tf.math.is_inf(hid_states_3), tf.dtypes.int32)), 24)
self.assertEqual(
tf.math.reduce_sum(
tf.cast(tf.math.is_inf(hid_states_4), tf.dtypes.int32)), 12)
def test_chunk(self):
hidden_states = self._get_hidden_states()
batch_size = 1
seq_length = 8
hidden_size = 4
hidden_states = tf.reshape(hidden_states,
(batch_size, seq_length, hidden_size))
chunked_hidden_states = longformer_attention.LongformerAttention._chunk(
hidden_states, window_overlap=2)
# expected slices across chunk and seq length dim
expected_slice_along_seq_length = tf.convert_to_tensor(
[0.4983, -0.7584, -1.6944], dtype=tf.dtypes.float32)
expected_slice_along_chunk = tf.convert_to_tensor(
[0.4983, -1.8348, -0.7584, 2.0514], dtype=tf.dtypes.float32)
self.assertEqual(get_shape_list(chunked_hidden_states), [1, 3, 4, 4])
tf.debugging.assert_near(
chunked_hidden_states[0, :, 0, 0],
expected_slice_along_seq_length,
rtol=1e-3)
tf.debugging.assert_near(
chunked_hidden_states[0, 0, :, 0],
expected_slice_along_chunk,
rtol=1e-3)
def test_layer_local_attn(self):
hidden_states = self._get_hidden_states()
batch_size, seq_length, _ = hidden_states.shape
layer = longformer_attention.LongformerAttention(
num_heads=2,
key_dim=4,
value_dim=4,
layer_id=0,
attention_window=4,
global_attention_size=0,
)
attention_mask = tf.zeros((batch_size, seq_length), dtype=tf.dtypes.float32)
is_index_global_attn = tf.math.greater(attention_mask, 1)
attention_mask = tf.where(
tf.range(4)[None, :, None, None] > 1, -10000.0,
attention_mask[:, :, None, None])
is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0)
output_hidden_states = layer(
hidden_states=hidden_states,
attention_mask=attention_mask,
is_index_masked=is_index_masked,
is_index_global_attn=is_index_global_attn,
)[0]
self.assertTrue(output_hidden_states.shape, (1, 4, 8))
def test_layer_global_attn(self):
layer = longformer_attention.LongformerAttention(
num_heads=2,
key_dim=4,
value_dim=4,
layer_id=0,
attention_window=4,
global_attention_size=1,
)
hidden_states = self._get_hidden_states()
hidden_states = tf.concat(
[self._get_hidden_states(),
self._get_hidden_states() - 0.5], axis=0)
_, seq_length, _ = hidden_states.shape
# create attn mask
attention_mask_1 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)
attention_mask_2 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)
attention_mask_1 = tf.where(
tf.range(4)[None, :, None, None] == 0, 10000.0, attention_mask_1)
attention_mask_1 = tf.where(
tf.range(4)[None, :, None, None] > 2, -10000.0, attention_mask_1)
attention_mask_2 = tf.where(
tf.range(4)[None, :, None, None] == 0, 10000.0, attention_mask_2)
attention_mask = tf.concat([attention_mask_1, attention_mask_2], axis=0)
is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0)
is_index_global_attn = tf.math.greater(attention_mask[:, :, 0, 0], 0)
output_hidden_states = layer(
hidden_states=hidden_states,
attention_mask=-tf.math.abs(attention_mask),
is_index_masked=is_index_masked,
is_index_global_attn=is_index_global_attn,
)[0]
self.assertTrue(output_hidden_states.shape, (2, 4, 8))
if __name__ == '__main__':
tf.test.main()
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Longformer encoder. Modified From huggingface/transformers."""
# pylint: disable=g-classes-have-attributes
from typing import Any, Callable, List, Optional, Union
from absl import logging
import tensorflow as tf
from official.modeling.tf_utils import get_shape_list
from official.nlp.modeling import layers
from official.projects.longformer.longformer_encoder_block import LongformerEncoderBlock
_Initializer = Union[str, tf.keras.initializers.Initializer]
_approx_gelu = lambda x: tf.keras.activations.gelu(x, approximate=True)
class LongformerEncoder(tf.keras.layers.Layer):
"""LongformerEncoder.
Args:
vocab_size: The size of the token vocabulary.
attention_window: list of ints representing the window size for each layer.
global_attention_size: the size of global attention used for each token.
pad_token_id: the token id for the pad token
hidden_size: The size of the transformer hidden layers.
num_layers: The number of transformer layers.
num_attention_heads: The number of attention heads for each transformer. The
hidden size must be divisible by the number of attention heads.
max_sequence_length: The maximum sequence length that this encoder can
consume. If None, max_sequence_length uses the value from sequence length.
This determines the variable shape for positional embeddings.
type_vocab_size: The number of types that the 'type_ids' input can take.
inner_dim: The output dimension of the first Dense layer in a two-layer
feedforward network for each transformer.
inner_activation: The activation for the first Dense layer in a two-layer
feedforward network for each transformer.
output_dropout: Dropout probability for the post-attention and output
dropout.
attention_dropout: The dropout rate to use for the attention layers within
the transformer layers.
initializer: The initialzer to use for all weights in this encoder.
output_range: The sequence output range, [0, output_range), by slicing the
target sequence of the last transformer layer. `None` means the entire
target sequence will attend to the source sequence, which yields the full
output.
embedding_width: The width of the word embeddings. If the embedding width is
not equal to hidden size, embedding parameters will be factorized into two
matrices in the shape of ['vocab_size', 'embedding_width'] and
['embedding_width', 'hidden_size'] ('embedding_width' is usually much
smaller than 'hidden_size').
embedding_layer: An optional Layer instance which will be called to generate
embeddings for the input word IDs.
norm_first: Whether to normalize inputs to attention and intermediate dense
layers. If set False, output of attention and intermediate dense layers is
normalized.
"""
def __init__(
self,
vocab_size: int,
attention_window: Union[List[int], int] = 512,
global_attention_size: int = 0,
pad_token_id: int = 1,
hidden_size: int = 768,
num_layers: int = 12,
num_attention_heads: int = 12,
max_sequence_length: int = 512,
type_vocab_size: int = 16,
inner_dim: int = 3072,
inner_activation: Callable[..., Any] = _approx_gelu,
output_dropout: float = 0.1,
attention_dropout: float = 0.1,
initializer: _Initializer = tf.keras.initializers.TruncatedNormal(
stddev=0.02),
output_range: Optional[int] = None,
embedding_width: Optional[int] = None,
embedding_layer: Optional[tf.keras.layers.Layer] = None,
norm_first: bool = False,
**kwargs):
super().__init__(**kwargs)
# Longformer args
self._attention_window = attention_window
self._global_attention_size = global_attention_size
self._pad_token_id = pad_token_id
activation = tf.keras.activations.get(inner_activation)
initializer = tf.keras.initializers.get(initializer)
if embedding_width is None:
embedding_width = hidden_size
if embedding_layer is None:
self._embedding_layer = layers.OnDeviceEmbedding(
vocab_size=vocab_size,
embedding_width=embedding_width,
initializer=initializer,
name='word_embeddings')
else:
self._embedding_layer = embedding_layer
self._position_embedding_layer = layers.PositionEmbedding(
initializer=initializer,
max_length=max_sequence_length,
name='position_embedding')
self._type_embedding_layer = layers.OnDeviceEmbedding(
vocab_size=type_vocab_size,
embedding_width=embedding_width,
initializer=initializer,
use_one_hot=True,
name='type_embeddings')
self._embedding_norm_layer = tf.keras.layers.LayerNormalization(
name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32)
self._embedding_dropout = tf.keras.layers.Dropout(
rate=output_dropout, name='embedding_dropout')
# We project the 'embedding' output to 'hidden_size' if it is not already
# 'hidden_size'.
self._embedding_projection = None
if embedding_width != hidden_size:
self._embedding_projection = tf.keras.layers.experimental.EinsumDense(
'...x,xy->...y',
output_shape=hidden_size,
bias_axes='y',
kernel_initializer=initializer,
name='embedding_projection')
self._transformer_layers = []
self._attention_mask_layer = layers.SelfAttentionMask(
name='self_attention_mask')
for i in range(num_layers):
layer = LongformerEncoderBlock(
global_attention_size=global_attention_size,
num_attention_heads=num_attention_heads,
inner_dim=inner_dim,
inner_activation=inner_activation,
attention_window=attention_window[i],
layer_id=i,
output_dropout=output_dropout,
attention_dropout=attention_dropout,
norm_first=norm_first,
output_range=output_range if i == num_layers - 1 else None,
kernel_initializer=initializer,
name=f'transformer/layer_{i}')
self._transformer_layers.append(layer)
self._pooler_layer = tf.keras.layers.Dense(
units=hidden_size,
activation='tanh',
kernel_initializer=initializer,
name='pooler_transform')
self._config = {
'vocab_size': vocab_size,
'hidden_size': hidden_size,
'num_layers': num_layers,
'num_attention_heads': num_attention_heads,
'max_sequence_length': max_sequence_length,
'type_vocab_size': type_vocab_size,
'inner_dim': inner_dim,
'inner_activation': tf.keras.activations.serialize(activation),
'output_dropout': output_dropout,
'attention_dropout': attention_dropout,
'initializer': tf.keras.initializers.serialize(initializer),
'output_range': output_range,
'embedding_width': embedding_width,
'embedding_layer': embedding_layer,
'norm_first': norm_first,
'attention_window': attention_window,
'global_attention_size': global_attention_size,
'pad_token_id': pad_token_id,
}
self.inputs = dict(
input_word_ids=tf.keras.Input(shape=(None,), dtype=tf.int32),
input_mask=tf.keras.Input(shape=(None,), dtype=tf.int32),
input_type_ids=tf.keras.Input(shape=(None,), dtype=tf.int32))
def call(self, inputs):
word_embeddings = None
if isinstance(inputs, dict):
word_ids = inputs.get('input_word_ids') # input_ids
mask = inputs.get('input_mask') # attention_mask
type_ids = inputs.get('input_type_ids') # token_type_ids
word_embeddings = inputs.get('input_word_embeddings',
None) # input_embeds
else:
raise ValueError(f'Unexpected inputs type to {self.__class__}.')
(
padding_len,
word_ids,
mask,
type_ids,
word_embeddings,
) = self._pad_to_window_size(
word_ids=word_ids,
mask=mask,
type_ids=type_ids,
word_embeddings=word_embeddings,
pad_token_id=self._pad_token_id)
if word_embeddings is None:
word_embeddings = self._embedding_layer(word_ids)
# absolute position embeddings.
position_embeddings = self._position_embedding_layer(word_embeddings)
type_embeddings = self._type_embedding_layer(type_ids)
embeddings = word_embeddings + position_embeddings + type_embeddings
embeddings = self._embedding_norm_layer(embeddings)
embeddings = self._embedding_dropout(embeddings)
if self._embedding_projection is not None:
embeddings = self._embedding_projection(embeddings)
batch_size, seq_len = get_shape_list(mask)
# create masks with fixed len global_attention_size
mask = tf.transpose(
tf.concat(
values=[
tf.ones(
(self._global_attention_size, batch_size), tf.int32) * 2,
tf.transpose(mask)[self._global_attention_size:]
],
axis=0))
is_index_masked = tf.math.less(mask, 1)
is_index_global_attn = tf.transpose(
tf.concat(
values=[
tf.ones((self._global_attention_size, batch_size), tf.bool),
tf.zeros((seq_len - self._global_attention_size, batch_size),
tf.bool)
],
axis=0))
# Longformer
attention_mask = mask
extended_attention_mask = tf.reshape(
attention_mask, (tf.shape(mask)[0], tf.shape(mask)[1], 1, 1))
attention_mask = tf.cast(
tf.math.abs(1 - extended_attention_mask), tf.dtypes.float32) * -10000.0
encoder_outputs = []
x = embeddings
# TFLongformerEncoder
for layer in self._transformer_layers:
x = layer([x, attention_mask, is_index_masked, is_index_global_attn])
encoder_outputs.append(x)
last_encoder_output = encoder_outputs[-1]
if padding_len > 0:
last_encoder_output = last_encoder_output[:, :-padding_len]
first_token_tensor = last_encoder_output[:, 0, :]
pooled_output = self._pooler_layer(first_token_tensor)
return dict(
sequence_output=last_encoder_output,
pooled_output=pooled_output,
encoder_outputs=encoder_outputs)
def get_embedding_table(self):
return self._embedding_layer.embeddings
def get_embedding_layer(self):
return self._embedding_layer
def get_config(self):
return dict(self._config)
@property
def transformer_layers(self):
"""List of Transformer layers in the encoder."""
return self._transformer_layers
@property
def pooler_layer(self):
"""The pooler dense layer after the transformer layers."""
return self._pooler_layer
@classmethod
def from_config(cls, config, custom_objects=None):
if 'embedding_layer' in config and config['embedding_layer'] is not None:
warn_string = (
'You are reloading a model that was saved with a '
'potentially-shared embedding layer object. If you contine to '
'train this model, the embedding layer will no longer be shared. '
'To work around this, load the model outside of the Keras API.')
print('WARNING: ' + warn_string)
logging.warn(warn_string)
return cls(**config)
def _pad_to_window_size(
self,
word_ids,
mask,
type_ids,
word_embeddings,
pad_token_id,
):
# padding
attention_window = max(self._attention_window)
assert (attention_window %
2 == 0), ('`attention_window` should be an even value.'
f'Given {attention_window}')
input_shape = get_shape_list(
word_ids) if word_ids is not None else get_shape_list(word_embeddings)
batch_size, seq_len = input_shape[:2]
if seq_len is not None:
padding_len = (attention_window -
seq_len % attention_window) % attention_window
else:
padding_len = 0
paddings = tf.convert_to_tensor([[0, 0], [0, padding_len]])
if word_ids is not None:
word_ids = tf.pad(word_ids, paddings, constant_values=pad_token_id)
if word_embeddings is not None:
def pad_embeddings():
word_ids_padding = tf.fill((batch_size, padding_len), self.pad_token_id)
word_embeddings_padding = self._embedding_layer(word_ids_padding)
return tf.concat([word_embeddings, word_embeddings_padding], axis=-2)
word_embeddings = tf.cond(
tf.math.greater(padding_len, 0), pad_embeddings,
lambda: word_embeddings)
mask = tf.pad(
mask, paddings,
constant_values=False) # no attention on the padding tokens
token_type_ids = tf.pad(
type_ids, paddings, constant_values=0) # pad with token_type_id = 0
return (
padding_len,
word_ids,
mask,
token_type_ids,
word_embeddings,
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment