Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
40013f67
Commit
40013f67
authored
Aug 11, 2021
by
A. Unique TensorFlower
Browse files
Internal change
PiperOrigin-RevId: 390235315
parent
d4bc6160
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
14 additions
and
3 deletions
+14
-3
official/nlp/tasks/sentence_prediction.py
official/nlp/tasks/sentence_prediction.py
+14
-3
No files found.
official/nlp/tasks/sentence_prediction.py
View file @
40013f67
...
@@ -13,10 +13,10 @@
...
@@ -13,10 +13,10 @@
# limitations under the License.
# limitations under the License.
"""Sentence prediction (classification) task."""
"""Sentence prediction (classification) task."""
import
dataclasses
from
typing
import
List
,
Union
,
Optional
from
typing
import
List
,
Union
,
Optional
from
absl
import
logging
from
absl
import
logging
import
dataclasses
import
numpy
as
np
import
numpy
as
np
import
orbit
import
orbit
from
scipy
import
stats
from
scipy
import
stats
...
@@ -140,15 +140,26 @@ class SentencePredictionTask(base_task.Task):
...
@@ -140,15 +140,26 @@ class SentencePredictionTask(base_task.Task):
del
training
del
training
if
self
.
task_config
.
model
.
num_classes
==
1
:
if
self
.
task_config
.
model
.
num_classes
==
1
:
metrics
=
[
tf
.
keras
.
metrics
.
MeanSquaredError
()]
metrics
=
[
tf
.
keras
.
metrics
.
MeanSquaredError
()]
elif
self
.
task_config
.
model
.
num_classes
==
2
:
metrics
=
[
tf
.
keras
.
metrics
.
SparseCategoricalAccuracy
(
name
=
'cls_accuracy'
),
tf
.
keras
.
metrics
.
AUC
(
name
=
'auc'
,
curve
=
'PR'
),
]
else
:
else
:
metrics
=
[
metrics
=
[
tf
.
keras
.
metrics
.
SparseCategoricalAccuracy
(
name
=
'cls_accuracy'
)
tf
.
keras
.
metrics
.
SparseCategoricalAccuracy
(
name
=
'cls_accuracy'
)
,
]
]
return
metrics
return
metrics
def
process_metrics
(
self
,
metrics
,
labels
,
model_outputs
):
def
process_metrics
(
self
,
metrics
,
labels
,
model_outputs
):
for
metric
in
metrics
:
for
metric
in
metrics
:
metric
.
update_state
(
labels
[
self
.
label_field
],
model_outputs
)
if
metric
.
name
==
'auc'
:
# Convert the logit to probability and extract the probability of True..
metric
.
update_state
(
labels
[
self
.
label_field
],
tf
.
expand_dims
(
tf
.
nn
.
softmax
(
model_outputs
)[:,
1
],
axis
=
1
))
if
metric
.
name
==
'cls_accuracy'
:
metric
.
update_state
(
labels
[
self
.
label_field
],
model_outputs
)
def
process_compiled_metrics
(
self
,
compiled_metrics
,
labels
,
model_outputs
):
def
process_compiled_metrics
(
self
,
compiled_metrics
,
labels
,
model_outputs
):
compiled_metrics
.
update_state
(
labels
[
self
.
label_field
],
model_outputs
)
compiled_metrics
.
update_state
(
labels
[
self
.
label_field
],
model_outputs
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment