Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
3fca8afe
Unverified
Commit
3fca8afe
authored
May 02, 2018
by
Katherine Wu
Committed by
GitHub
May 02, 2018
Browse files
Add transformer model (#4148)
parent
dea7ecf6
Changes
24
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
1526 additions
and
0 deletions
+1526
-0
official/transformer/utils/dataset.py
official/transformer/utils/dataset.py
+250
-0
official/transformer/utils/metrics.py
official/transformer/utils/metrics.py
+482
-0
official/transformer/utils/tokenizer.py
official/transformer/utils/tokenizer.py
+611
-0
official/transformer/utils/tokenizer_test.py
official/transformer/utils/tokenizer_test.py
+183
-0
No files found.
official/transformer/utils/dataset.py
0 → 100644
View file @
3fca8afe
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Input pipeline for the transformer model to read, filter, and batch examples.
Two things to note in the pipeline:
1. Batching scheme
The examples encoded in the TFRecord files contain data in the format:
{"inputs": [variable length array of integers],
"targets": [variable length array of integers]}
Where integers in the arrays refer to tokens in the English and German vocab
file (named `vocab.ende.32768`).
Prior to batching, elements in the dataset are grouped by length (max between
"inputs" and "targets" length). Each group is then batched such that:
group_batch_size * length <= batch_size.
Another way to view batch_size is the maximum number of tokens in each batch.
Once batched, each element in the dataset will have the shape:
{"inputs": [group_batch_size, padded_input_length],
"targets": [group_batch_size, padded_target_length]}
Lengths are padded to the longest "inputs" or "targets" sequence in the batch
(padded_input_length and padded_target_length can be different).
This batching scheme decreases the fraction of padding tokens per training
batch, thus improving the training speed significantly.
2. Shuffling
While training, the dataset is shuffled in two places in the code. The first
is the list of training files. Second, while reading records using
`parallel_interleave`, the `sloppy` argument is used to generate randomness
in the order of the examples.
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
tensorflow
as
tf
# Use the number of training files as the shuffle buffer.
_FILE_SHUFFLE_BUFFER
=
100
# Buffer size for reading records from a TFRecord file. Each training file is
# 7.2 MB, so 8 MB allows an entire file to be kept in memory.
_READ_RECORD_BUFFER
=
8
*
1000
*
1000
# Example grouping constants. Defines length boundaries for each group.
# These values are the defaults used in Tensor2Tensor.
_MIN_BOUNDARY
=
8
_BOUNDARY_SCALE
=
1.1
def
_load_records
(
filename
):
"""Read file and return a dataset of tf.Examples."""
return
tf
.
data
.
TFRecordDataset
(
filename
,
buffer_size
=
_READ_RECORD_BUFFER
)
def
_parse_example
(
serialized_example
):
"""Return inputs and targets Tensors from a serialized tf.Example."""
data_fields
=
{
"inputs"
:
tf
.
VarLenFeature
(
tf
.
int64
),
"targets"
:
tf
.
VarLenFeature
(
tf
.
int64
)
}
parsed
=
tf
.
parse_single_example
(
serialized_example
,
data_fields
)
inputs
=
tf
.
sparse_tensor_to_dense
(
parsed
[
"inputs"
])
targets
=
tf
.
sparse_tensor_to_dense
(
parsed
[
"targets"
])
return
inputs
,
targets
def
_filter_max_length
(
example
,
max_length
=
256
):
"""Indicates whether the example's length is lower than the maximum length."""
return
tf
.
logical_and
(
tf
.
size
(
example
[
0
])
<=
max_length
,
tf
.
size
(
example
[
1
])
<=
max_length
)
def
_get_example_length
(
example
):
"""Returns the maximum length between the example inputs and targets."""
length
=
tf
.
maximum
(
tf
.
shape
(
example
[
0
])[
0
],
tf
.
shape
(
example
[
1
])[
0
])
return
length
def
_create_min_max_boundaries
(
max_length
,
min_boundary
=
_MIN_BOUNDARY
,
boundary_scale
=
_BOUNDARY_SCALE
):
"""Create min and max boundary lists up to max_length.
For example, when max_length=24, min_boundary=4 and boundary_scale=2, the
returned values will be:
buckets_min = [0, 4, 8, 16, 24]
buckets_max = [4, 8, 16, 24, 25]
Args:
max_length: The maximum length of example in dataset.
min_boundary: Minimum length in boundary.
boundary_scale: Amount to scale consecutive boundaries in the list.
Returns:
min and max boundary lists
"""
# Create bucket boundaries list by scaling the previous boundary or adding 1
# (to ensure increasing boundary sizes).
bucket_boundaries
=
[]
x
=
min_boundary
while
x
<
max_length
:
bucket_boundaries
.
append
(
x
)
x
=
max
(
x
+
1
,
int
(
x
*
boundary_scale
))
# Create min and max boundary lists from the initial list.
buckets_min
=
[
0
]
+
bucket_boundaries
buckets_max
=
bucket_boundaries
+
[
max_length
+
1
]
return
buckets_min
,
buckets_max
def
_batch_examples
(
dataset
,
batch_size
,
max_length
):
"""Group examples by similar lengths, and return batched dataset.
Each batch of similar-length examples are padded to the same length, and may
have different number of elements in each batch, such that:
group_batch_size * padded_length <= batch_size.
This decreases the number of padding tokens per batch, which improves the
training speed.
Args:
dataset: Dataset of unbatched examples.
batch_size: Max number of tokens per batch of examples.
max_length: Max number of tokens in an example input or target sequence.
Returns:
Dataset of batched examples with similar lengths.
"""
# Get min and max boundary lists for each example. These are used to calculate
# the `bucket_id`, which is the index at which:
# buckets_min[bucket_id] <= len(example) < buckets_max[bucket_id]
# Note that using both min and max lists improves the performance.
buckets_min
,
buckets_max
=
_create_min_max_boundaries
(
max_length
)
# Create list of batch sizes for each bucket_id, so that
# bucket_batch_size[bucket_id] * buckets_max[bucket_id] <= batch_size
bucket_batch_sizes
=
[
batch_size
//
x
for
x
in
buckets_max
]
# bucket_id will be a tensor, so convert this list to a tensor as well.
bucket_batch_sizes
=
tf
.
constant
(
bucket_batch_sizes
,
dtype
=
tf
.
int64
)
def
example_to_bucket_id
(
example_input
,
example_target
):
"""Return int64 bucket id for this example, calculated based on length."""
seq_length
=
_get_example_length
((
example_input
,
example_target
))
# TODO: investigate whether removing code branching improves performance.
conditions_c
=
tf
.
logical_and
(
tf
.
less_equal
(
buckets_min
,
seq_length
),
tf
.
less
(
seq_length
,
buckets_max
))
bucket_id
=
tf
.
reduce_min
(
tf
.
where
(
conditions_c
))
return
bucket_id
def
window_size_fn
(
bucket_id
):
"""Return number of examples to be grouped when given a bucket id."""
return
bucket_batch_sizes
[
bucket_id
]
def
batching_fn
(
bucket_id
,
grouped_dataset
):
"""Batch and add padding to a dataset of elements with similar lengths."""
bucket_batch_size
=
window_size_fn
(
bucket_id
)
# Batch the dataset and add padding so that all input sequences in the
# examples have the same length, and all target sequences have the same
# lengths as well. Resulting lengths of inputs and targets can differ.
return
grouped_dataset
.
padded_batch
(
bucket_batch_size
,
([
None
],
[
None
]))
return
dataset
.
apply
(
tf
.
contrib
.
data
.
group_by_window
(
key_func
=
example_to_bucket_id
,
reduce_func
=
batching_fn
,
window_size
=
None
,
window_size_func
=
window_size_fn
))
def
_read_and_batch_from_files
(
file_pattern
,
batch_size
,
max_length
,
num_cpu_cores
,
shuffle
,
repeat
):
"""Create dataset where each item is a dict of "inputs" and "targets".
Args:
file_pattern: String used to match the input TFRecord files.
batch_size: Maximum number of tokens per batch of examples
max_length: Maximum number of tokens per example
num_cpu_cores: Number of cpu cores for parallel input processing.
shuffle: If true, randomizes order of elements.
repeat: Number of times to repeat the dataset. If None, the dataset is
repeated forever.
Returns:
tf.data.Dataset object containing examples loaded from the files.
"""
dataset
=
tf
.
data
.
Dataset
.
list_files
(
file_pattern
)
if
shuffle
:
# Shuffle filenames
dataset
=
dataset
.
shuffle
(
buffer_size
=
_FILE_SHUFFLE_BUFFER
)
# Read files and interleave results. When training, the order of the examples
# will be non-deterministic.
dataset
=
dataset
.
apply
(
tf
.
contrib
.
data
.
parallel_interleave
(
_load_records
,
sloppy
=
shuffle
,
cycle_length
=
num_cpu_cores
))
# Parse each tf.Example into a dictionary
# TODO: Look into prefetch_input_elements for performance optimization.
dataset
=
dataset
.
map
(
_parse_example
,
num_parallel_calls
=
num_cpu_cores
)
# Remove examples where the input or target length exceeds the maximum length,
dataset
=
dataset
.
filter
(
lambda
x
,
y
:
_filter_max_length
((
x
,
y
),
max_length
))
# Batch such that each batch has examples of similar length.
dataset
=
_batch_examples
(
dataset
,
batch_size
,
max_length
)
dataset
=
dataset
.
repeat
(
repeat
)
# Prefetch the next element to improve speed of input pipeline.
dataset
=
dataset
.
prefetch
(
1
)
return
dataset
def
train_input_fn
(
params
):
"""Load and return dataset of batched examples for use during training."""
file_pattern
=
os
.
path
.
join
(
getattr
(
params
,
"data_dir"
,
""
),
"*train*"
)
return
_read_and_batch_from_files
(
file_pattern
,
params
.
batch_size
,
params
.
max_length
,
params
.
num_cpu_cores
,
shuffle
=
True
,
repeat
=
params
.
repeat_dataset
)
def
eval_input_fn
(
params
):
"""Load and return dataset of batched examples for use during evaluation."""
file_pattern
=
os
.
path
.
join
(
getattr
(
params
,
"data_dir"
,
""
),
"*dev*"
)
return
_read_and_batch_from_files
(
file_pattern
,
params
.
batch_size
,
params
.
max_length
,
params
.
num_cpu_cores
,
shuffle
=
False
,
repeat
=
1
)
official/transformer/utils/metrics.py
0 → 100644
View file @
3fca8afe
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for calculating loss, accuracy, and other model metrics.
Metrics:
- Padded loss, accuracy, and negative log perplexity. Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/metrics.py
- BLEU approximation. Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/bleu_hook.py
- ROUGE score. Source:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/rouge.py
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
collections
import
math
import
numpy
as
np
import
six
from
six.moves
import
xrange
# pylint: disable=redefined-builtin
import
tensorflow
as
tf
def
_pad_tensors_to_same_length
(
x
,
y
):
"""Pad x and y so that the results have the same length (second dimension)."""
with
tf
.
name_scope
(
"pad_to_same_length"
):
x_length
=
tf
.
shape
(
x
)[
1
]
y_length
=
tf
.
shape
(
y
)[
1
]
max_length
=
tf
.
maximum
(
x_length
,
y_length
)
x
=
tf
.
pad
(
x
,
[[
0
,
0
],
[
0
,
max_length
-
x_length
],
[
0
,
0
]])
y
=
tf
.
pad
(
y
,
[[
0
,
0
],
[
0
,
max_length
-
y_length
]])
return
x
,
y
def
padded_cross_entropy_loss
(
logits
,
labels
,
smoothing
,
vocab_size
):
"""Calculate cross entropy loss while ignoring padding.
Args:
logits: Tensor of size [batch_size, length_logits, vocab_size]
labels: Tensor of size [batch_size, length_labels]
smoothing: Label smoothing constant, used to determine the on and off values
vocab_size: int size of the vocabulary
Returns:
Returns a float32 tensor with shape
[batch_size, max(length_logits, length_labels)]
"""
with
tf
.
name_scope
(
"loss"
,
[
logits
,
labels
]):
logits
,
labels
=
_pad_tensors_to_same_length
(
logits
,
labels
)
# Calculate smoothing cross entropy
with
tf
.
name_scope
(
"smoothing_cross_entropy"
,
[
logits
,
labels
]):
confidence
=
1.0
-
smoothing
low_confidence
=
(
1.0
-
confidence
)
/
tf
.
to_float
(
vocab_size
-
1
)
soft_targets
=
tf
.
one_hot
(
tf
.
cast
(
labels
,
tf
.
int32
),
depth
=
vocab_size
,
on_value
=
confidence
,
off_value
=
low_confidence
)
xentropy
=
tf
.
nn
.
softmax_cross_entropy_with_logits_v2
(
logits
=
logits
,
labels
=
soft_targets
)
# Calculate the best (lowest) possible value of cross entropy, and
# subtract from the cross entropy loss.
normalizing_constant
=
-
(
confidence
*
tf
.
log
(
confidence
)
+
tf
.
to_float
(
vocab_size
-
1
)
*
low_confidence
*
tf
.
log
(
low_confidence
+
1e-20
))
xentropy
-=
normalizing_constant
weights
=
tf
.
to_float
(
tf
.
not_equal
(
labels
,
0
))
return
xentropy
*
weights
,
weights
def
_convert_to_eval_metric
(
metric_fn
):
"""Wrap a metric fn that returns scores and weights as an eval metric fn.
The input metric_fn returns values for the current batch. The wrapper
aggregates the return values collected over all of the batches evaluated.
Args:
metric_fn: function that returns scores and weights for the current batch's
logits and predicted labels.
Returns:
function that aggregates the scores and weights from metric_fn.
"""
def
problem_metric_fn
(
*
args
):
"""Returns an aggregation of the metric_fn's returned values."""
(
scores
,
weights
)
=
metric_fn
(
*
args
)
# The tf.metrics.mean function assures correct aggregation.
return
tf
.
metrics
.
mean
(
scores
,
weights
)
return
problem_metric_fn
def
get_eval_metrics
(
logits
,
labels
,
params
):
"""Return dictionary of model evaluation metrics."""
metrics
=
{
"accuracy"
:
_convert_to_eval_metric
(
padded_accuracy
)(
logits
,
labels
),
"accuracy_top5"
:
_convert_to_eval_metric
(
padded_accuracy_top5
)(
logits
,
labels
),
"accuracy_per_sequence"
:
_convert_to_eval_metric
(
padded_sequence_accuracy
)(
logits
,
labels
),
"neg_log_perplexity"
:
_convert_to_eval_metric
(
padded_neg_log_perplexity
)(
logits
,
labels
,
params
.
vocab_size
),
"approx_bleu_score"
:
_convert_to_eval_metric
(
bleu_score
)(
logits
,
labels
),
"rouge_2_fscore"
:
_convert_to_eval_metric
(
rouge_2_fscore
)(
logits
,
labels
),
"rouge_L_fscore"
:
_convert_to_eval_metric
(
rouge_l_fscore
)(
logits
,
labels
),
}
# Prefix each of the metric names with "metrics/". This allows the metric
# graphs to display under the "metrics" category in TensorBoard.
metrics
=
{
"metrics/%s"
%
k
:
v
for
k
,
v
in
six
.
iteritems
(
metrics
)}
return
metrics
def
padded_accuracy
(
logits
,
labels
):
"""Percentage of times that predictions matches labels on non-0s."""
with
tf
.
variable_scope
(
"padded_accuracy"
,
values
=
[
logits
,
labels
]):
logits
,
labels
=
_pad_tensors_to_same_length
(
logits
,
labels
)
weights
=
tf
.
to_float
(
tf
.
not_equal
(
labels
,
0
))
outputs
=
tf
.
to_int32
(
tf
.
argmax
(
logits
,
axis
=-
1
))
padded_labels
=
tf
.
to_int32
(
labels
)
return
tf
.
to_float
(
tf
.
equal
(
outputs
,
padded_labels
)),
weights
def
padded_accuracy_topk
(
logits
,
labels
,
k
):
"""Percentage of times that top-k predictions matches labels on non-0s."""
with
tf
.
variable_scope
(
"padded_accuracy_topk"
,
values
=
[
logits
,
labels
]):
logits
,
labels
=
_pad_tensors_to_same_length
(
logits
,
labels
)
weights
=
tf
.
to_float
(
tf
.
not_equal
(
labels
,
0
))
effective_k
=
tf
.
minimum
(
k
,
tf
.
shape
(
logits
)[
-
1
])
_
,
outputs
=
tf
.
nn
.
top_k
(
logits
,
k
=
effective_k
)
outputs
=
tf
.
to_int32
(
outputs
)
padded_labels
=
tf
.
to_int32
(
labels
)
padded_labels
=
tf
.
expand_dims
(
padded_labels
,
axis
=-
1
)
padded_labels
+=
tf
.
zeros_like
(
outputs
)
# Pad to same shape.
same
=
tf
.
to_float
(
tf
.
equal
(
outputs
,
padded_labels
))
same_topk
=
tf
.
reduce_sum
(
same
,
axis
=-
1
)
return
same_topk
,
weights
def
padded_accuracy_top5
(
logits
,
labels
):
return
padded_accuracy_topk
(
logits
,
labels
,
5
)
def
padded_sequence_accuracy
(
logits
,
labels
):
"""Percentage of times that predictions matches labels everywhere (non-0)."""
with
tf
.
variable_scope
(
"padded_sequence_accuracy"
,
values
=
[
logits
,
labels
]):
logits
,
labels
=
_pad_tensors_to_same_length
(
logits
,
labels
)
weights
=
tf
.
to_float
(
tf
.
not_equal
(
labels
,
0
))
outputs
=
tf
.
to_int32
(
tf
.
argmax
(
logits
,
axis
=-
1
))
padded_labels
=
tf
.
to_int32
(
labels
)
not_correct
=
tf
.
to_float
(
tf
.
not_equal
(
outputs
,
padded_labels
))
*
weights
axis
=
list
(
range
(
1
,
len
(
outputs
.
get_shape
())))
correct_seq
=
1.0
-
tf
.
minimum
(
1.0
,
tf
.
reduce_sum
(
not_correct
,
axis
=
axis
))
return
correct_seq
,
tf
.
constant
(
1.0
)
def
padded_neg_log_perplexity
(
logits
,
labels
,
vocab_size
):
"""Average log-perplexity excluding padding 0s. No smoothing."""
num
,
den
=
padded_cross_entropy_loss
(
logits
,
labels
,
0
,
vocab_size
)
return
-
num
,
den
def
bleu_score
(
logits
,
labels
):
"""Approximate BLEU score computation between labels and predictions.
An approximate BLEU scoring method since we do not glue word pieces or
decode the ids and tokenize the output. By default, we use ngram order of 4
and use brevity penalty. Also, this does not have beam search.
Args:
logits: Tensor of size [batch_size, length_logits, vocab_size]
labels: Tensor of size [batch-size, length_labels]
Returns:
bleu: int, approx bleu score
"""
predictions
=
tf
.
to_int32
(
tf
.
argmax
(
logits
,
axis
=-
1
))
# TODO: Look into removing use of py_func
bleu
=
tf
.
py_func
(
compute_bleu
,
(
labels
,
predictions
),
tf
.
float32
)
return
bleu
,
tf
.
constant
(
1.0
)
def
_get_ngrams_with_counter
(
segment
,
max_order
):
"""Extracts all n-grams up to a given maximum order from an input segment.
Args:
segment: text segment from which n-grams will be extracted.
max_order: maximum length in tokens of the n-grams returned by this
methods.
Returns:
The Counter containing all n-grams upto max_order in segment
with a count of how many times each n-gram occurred.
"""
ngram_counts
=
collections
.
Counter
()
for
order
in
xrange
(
1
,
max_order
+
1
):
for
i
in
xrange
(
0
,
len
(
segment
)
-
order
+
1
):
ngram
=
tuple
(
segment
[
i
:
i
+
order
])
ngram_counts
[
ngram
]
+=
1
return
ngram_counts
def
compute_bleu
(
reference_corpus
,
translation_corpus
,
max_order
=
4
,
use_bp
=
True
):
"""Computes BLEU score of translated segments against one or more references.
Args:
reference_corpus: list of references for each translation. Each
reference should be tokenized into a list of tokens.
translation_corpus: list of translations to score. Each translation
should be tokenized into a list of tokens.
max_order: Maximum n-gram order to use when computing BLEU score.
use_bp: boolean, whether to apply brevity penalty.
Returns:
BLEU score.
"""
reference_length
=
0
translation_length
=
0
bp
=
1.0
geo_mean
=
0
matches_by_order
=
[
0
]
*
max_order
possible_matches_by_order
=
[
0
]
*
max_order
precisions
=
[]
for
(
references
,
translations
)
in
zip
(
reference_corpus
,
translation_corpus
):
reference_length
+=
len
(
references
)
translation_length
+=
len
(
translations
)
ref_ngram_counts
=
_get_ngrams_with_counter
(
references
,
max_order
)
translation_ngram_counts
=
_get_ngrams_with_counter
(
translations
,
max_order
)
overlap
=
dict
((
ngram
,
min
(
count
,
translation_ngram_counts
[
ngram
]))
for
ngram
,
count
in
ref_ngram_counts
.
items
())
for
ngram
in
overlap
:
matches_by_order
[
len
(
ngram
)
-
1
]
+=
overlap
[
ngram
]
for
ngram
in
translation_ngram_counts
:
possible_matches_by_order
[
len
(
ngram
)
-
1
]
+=
translation_ngram_counts
[
ngram
]
precisions
=
[
0
]
*
max_order
smooth
=
1.0
for
i
in
xrange
(
0
,
max_order
):
if
possible_matches_by_order
[
i
]
>
0
:
precisions
[
i
]
=
float
(
matches_by_order
[
i
])
/
possible_matches_by_order
[
i
]
if
matches_by_order
[
i
]
>
0
:
precisions
[
i
]
=
float
(
matches_by_order
[
i
])
/
possible_matches_by_order
[
i
]
else
:
smooth
*=
2
precisions
[
i
]
=
1.0
/
(
smooth
*
possible_matches_by_order
[
i
])
else
:
precisions
[
i
]
=
0.0
if
max
(
precisions
)
>
0
:
p_log_sum
=
sum
(
math
.
log
(
p
)
for
p
in
precisions
if
p
)
geo_mean
=
math
.
exp
(
p_log_sum
/
max_order
)
if
use_bp
:
ratio
=
translation_length
/
reference_length
bp
=
math
.
exp
(
1
-
1.
/
ratio
)
if
ratio
<
1.0
else
1.0
bleu
=
geo_mean
*
bp
return
np
.
float32
(
bleu
)
def
rouge_2_fscore
(
logits
,
labels
):
"""ROUGE-2 F1 score computation between labels and predictions.
This is an approximate ROUGE scoring method since we do not glue word pieces
or decode the ids and tokenize the output.
Args:
logits: tensor, model predictions
labels: tensor, gold output.
Returns:
rouge2_fscore: approx rouge-2 f1 score.
"""
predictions
=
tf
.
to_int32
(
tf
.
argmax
(
logits
,
axis
=-
1
))
# TODO: Look into removing use of py_func
rouge_2_f_score
=
tf
.
py_func
(
rouge_n
,
(
predictions
,
labels
),
tf
.
float32
)
return
rouge_2_f_score
,
tf
.
constant
(
1.0
)
def
_get_ngrams
(
n
,
text
):
"""Calculates n-grams.
Args:
n: which n-grams to calculate
text: An array of tokens
Returns:
A set of n-grams
"""
ngram_set
=
set
()
text_length
=
len
(
text
)
max_index_ngram_start
=
text_length
-
n
for
i
in
range
(
max_index_ngram_start
+
1
):
ngram_set
.
add
(
tuple
(
text
[
i
:
i
+
n
]))
return
ngram_set
def
rouge_n
(
eval_sentences
,
ref_sentences
,
n
=
2
):
"""Computes ROUGE-N f1 score of two text collections of sentences.
Source: https://www.microsoft.com/en-us/research/publication/
rouge-a-package-for-automatic-evaluation-of-summaries/
Args:
eval_sentences: Predicted sentences.
ref_sentences: Sentences from the reference set
n: Size of ngram. Defaults to 2.
Returns:
f1 score for ROUGE-N
"""
f1_scores
=
[]
for
eval_sentence
,
ref_sentence
in
zip
(
eval_sentences
,
ref_sentences
):
eval_ngrams
=
_get_ngrams
(
n
,
eval_sentence
)
ref_ngrams
=
_get_ngrams
(
n
,
ref_sentence
)
ref_count
=
len
(
ref_ngrams
)
eval_count
=
len
(
eval_ngrams
)
# Count the overlapping ngrams between evaluated and reference
overlapping_ngrams
=
eval_ngrams
.
intersection
(
ref_ngrams
)
overlapping_count
=
len
(
overlapping_ngrams
)
# Handle edge case. This isn't mathematically correct, but it's good enough
if
eval_count
==
0
:
precision
=
0.0
else
:
precision
=
float
(
overlapping_count
)
/
eval_count
if
ref_count
==
0
:
recall
=
0.0
else
:
recall
=
float
(
overlapping_count
)
/
ref_count
f1_scores
.
append
(
2.0
*
((
precision
*
recall
)
/
(
precision
+
recall
+
1e-8
)))
# return overlapping_count / reference_count
return
np
.
mean
(
f1_scores
,
dtype
=
np
.
float32
)
def
rouge_l_fscore
(
predictions
,
labels
):
"""ROUGE scores computation between labels and predictions.
This is an approximate ROUGE scoring method since we do not glue word pieces
or decode the ids and tokenize the output.
Args:
predictions: tensor, model predictions
labels: tensor, gold output.
Returns:
rouge_l_fscore: approx rouge-l f1 score.
"""
outputs
=
tf
.
to_int32
(
tf
.
argmax
(
predictions
,
axis
=-
1
))
rouge_l_f_score
=
tf
.
py_func
(
rouge_l_sentence_level
,
(
outputs
,
labels
),
tf
.
float32
)
return
rouge_l_f_score
,
tf
.
constant
(
1.0
)
def
rouge_l_sentence_level
(
eval_sentences
,
ref_sentences
):
"""Computes ROUGE-L (sentence level) of two collections of sentences.
Source: https://www.microsoft.com/en-us/research/publication/
rouge-a-package-for-automatic-evaluation-of-summaries/
Calculated according to:
R_lcs = LCS(X,Y)/m
P_lcs = LCS(X,Y)/n
F_lcs = ((1 + beta^2)*R_lcs*P_lcs) / (R_lcs + (beta^2) * P_lcs)
where:
X = reference summary
Y = Candidate summary
m = length of reference summary
n = length of candidate summary
Args:
eval_sentences: The sentences that have been picked by the summarizer
ref_sentences: The sentences from the reference set
Returns:
A float: F_lcs
"""
f1_scores
=
[]
for
eval_sentence
,
ref_sentence
in
zip
(
eval_sentences
,
ref_sentences
):
m
=
float
(
len
(
ref_sentence
))
n
=
float
(
len
(
eval_sentence
))
lcs
=
_len_lcs
(
eval_sentence
,
ref_sentence
)
f1_scores
.
append
(
_f_lcs
(
lcs
,
m
,
n
))
return
np
.
mean
(
f1_scores
,
dtype
=
np
.
float32
)
def
_len_lcs
(
x
,
y
):
"""Returns the length of the Longest Common Subsequence between two seqs.
Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence
Args:
x: sequence of words
y: sequence of words
Returns
integer: Length of LCS between x and y
"""
table
=
_lcs
(
x
,
y
)
n
,
m
=
len
(
x
),
len
(
y
)
return
table
[
n
,
m
]
def
_lcs
(
x
,
y
):
"""Computes the length of the LCS between two seqs.
The implementation below uses a DP programming algorithm and runs
in O(nm) time where n = len(x) and m = len(y).
Source: http://www.algorithmist.com/index.php/Longest_Common_Subsequence
Args:
x: collection of words
y: collection of words
Returns:
Table of dictionary of coord and len lcs
"""
n
,
m
=
len
(
x
),
len
(
y
)
table
=
dict
()
for
i
in
range
(
n
+
1
):
for
j
in
range
(
m
+
1
):
if
i
==
0
or
j
==
0
:
table
[
i
,
j
]
=
0
elif
x
[
i
-
1
]
==
y
[
j
-
1
]:
table
[
i
,
j
]
=
table
[
i
-
1
,
j
-
1
]
+
1
else
:
table
[
i
,
j
]
=
max
(
table
[
i
-
1
,
j
],
table
[
i
,
j
-
1
])
return
table
def
_f_lcs
(
llcs
,
m
,
n
):
"""Computes the LCS-based F-measure score.
Source: http://research.microsoft.com/en-us/um/people/cyl/download/papers/
rouge-working-note-v1.3.1.pdf
Args:
llcs: Length of LCS
m: number of words in reference summary
n: number of words in candidate summary
Returns:
Float. LCS-based F-measure score
"""
r_lcs
=
llcs
/
m
p_lcs
=
llcs
/
n
beta
=
p_lcs
/
(
r_lcs
+
1e-12
)
num
=
(
1
+
(
beta
**
2
))
*
r_lcs
*
p_lcs
denom
=
r_lcs
+
((
beta
**
2
)
*
p_lcs
)
f_lcs
=
num
/
(
denom
+
1e-12
)
return
f_lcs
official/transformer/utils/tokenizer.py
0 → 100644
View file @
3fca8afe
This diff is collapsed.
Click to expand it.
official/transformer/utils/tokenizer_test.py
0 → 100644
View file @
3fca8afe
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test Subtokenizer and string helper methods."""
import
collections
import
tempfile
import
unittest
import
tensorflow
as
tf
# pylint: disable=g-bad-import-order
from
official.transformer.utils
import
tokenizer
class
SubtokenizerTest
(
unittest
.
TestCase
):
def
_init_subtokenizer
(
self
,
vocab_list
):
temp_file
=
tempfile
.
NamedTemporaryFile
(
delete
=
False
)
with
tf
.
gfile
.
Open
(
temp_file
.
name
,
'w'
)
as
w
:
for
subtoken
in
vocab_list
:
w
.
write
(
"'%s'"
%
subtoken
)
w
.
write
(
"
\n
"
)
return
tokenizer
.
Subtokenizer
(
temp_file
.
name
,
reserved_tokens
=
[])
def
test_encode
(
self
):
vocab_list
=
[
"123_"
,
"test"
,
"ing_"
]
subtokenizer
=
self
.
_init_subtokenizer
(
vocab_list
)
s
=
"testing 123"
encoded_list
=
subtokenizer
.
encode
(
s
)
self
.
assertEqual
([
1
,
2
,
0
],
encoded_list
)
def
test_decode
(
self
):
vocab_list
=
[
"123_"
,
"test"
,
"ing_"
]
subtokenizer
=
self
.
_init_subtokenizer
(
vocab_list
)
encoded_list
=
[
1
,
2
,
0
]
# testing 123
decoded_str
=
subtokenizer
.
decode
(
encoded_list
)
self
.
assertEqual
(
"testing 123"
,
decoded_str
)
def
test_subtoken_ids_to_tokens
(
self
):
vocab_list
=
[
"123_"
,
"test"
,
"ing_"
]
subtokenizer
=
self
.
_init_subtokenizer
(
vocab_list
)
encoded_list
=
[
1
,
2
,
0
]
# testing 123
token_list
=
subtokenizer
.
_subtoken_ids_to_tokens
(
encoded_list
)
self
.
assertEqual
([
u
"testing"
,
u
"123"
],
token_list
)
class
StringHelperTest
(
unittest
.
TestCase
):
def
test_split_string_to_tokens
(
self
):
text
=
"test? testing 123."
tokens
=
tokenizer
.
_split_string_to_tokens
(
text
)
self
.
assertEqual
([
"test"
,
"? "
,
"testing"
,
"123"
,
"."
],
tokens
)
def
test_join_tokens_to_string
(
self
):
tokens
=
[
"test"
,
"? "
,
"testing"
,
"123"
,
"."
]
s
=
tokenizer
.
_join_tokens_to_string
(
tokens
)
self
.
assertEqual
(
"test? testing 123."
,
s
)
def
test_escape_token
(
self
):
token
=
u
"abc_
\\
4"
alphabet
=
set
(
"abc_
\\
u;"
)
escaped_token
=
tokenizer
.
_escape_token
(
token
,
alphabet
)
self
.
assertEqual
(
"abc
\\
u
\\\\\\
52;_"
,
escaped_token
)
def
test_unescape_token
(
self
):
escaped_token
=
u
"Underline:
\\
u, Backslash:
\\\\
, Unicode:
\\
52;"
unescaped_token
=
tokenizer
.
_unescape_token
(
escaped_token
)
self
.
assertEqual
(
"Underline: _, Backslash:
\\
, Unicode: 4"
,
unescaped_token
)
def
test_list_to_index_dict
(
self
):
lst
=
[
"test"
,
"strings"
]
d
=
tokenizer
.
_list_to_index_dict
(
lst
)
self
.
assertDictEqual
({
"test"
:
0
,
"strings"
:
1
},
d
)
def
test_split_token_to_subtokens
(
self
):
token
=
"abc"
subtoken_dict
=
{
"a"
:
0
,
"b"
:
1
,
"c"
:
2
,
"ab"
:
3
}
max_subtoken_length
=
2
subtokens
=
tokenizer
.
_split_token_to_subtokens
(
token
,
subtoken_dict
,
max_subtoken_length
)
self
.
assertEqual
([
"ab"
,
"c"
],
subtokens
)
def
test_generate_alphabet_dict
(
self
):
s
=
[
"testing"
,
"123"
]
reserved_tokens
=
[
"???"
]
alphabet
=
tokenizer
.
_generate_alphabet_dict
(
s
,
reserved_tokens
)
self
.
assertIn
(
"?"
,
alphabet
)
self
.
assertIn
(
"t"
,
alphabet
)
self
.
assertIn
(
"e"
,
alphabet
)
self
.
assertIn
(
"s"
,
alphabet
)
self
.
assertIn
(
"i"
,
alphabet
)
self
.
assertIn
(
"n"
,
alphabet
)
self
.
assertIn
(
"g"
,
alphabet
)
self
.
assertIn
(
"1"
,
alphabet
)
self
.
assertIn
(
"2"
,
alphabet
)
self
.
assertIn
(
"3"
,
alphabet
)
def
test_count_and_gen_subtokens
(
self
):
token_counts
=
{
"abc"
:
5
}
alphabet
=
set
(
"abc_"
)
subtoken_dict
=
{
"a"
:
0
,
"b"
:
1
,
"c"
:
2
,
"_"
:
3
}
max_subtoken_length
=
2
subtoken_counts
=
tokenizer
.
_count_and_gen_subtokens
(
token_counts
,
alphabet
,
subtoken_dict
,
max_subtoken_length
)
self
.
assertIsInstance
(
subtoken_counts
,
collections
.
defaultdict
)
self
.
assertDictEqual
(
{
"a"
:
5
,
"b"
:
5
,
"c"
:
5
,
"_"
:
5
,
"ab"
:
5
,
"bc"
:
5
,
"c_"
:
5
,
"abc"
:
5
,
"bc_"
:
5
,
"abc_"
:
5
},
subtoken_counts
)
def
test_filter_and_bucket_subtokens
(
self
):
subtoken_counts
=
collections
.
defaultdict
(
int
,
{
"a"
:
2
,
"b"
:
4
,
"c"
:
1
,
"ab"
:
6
,
"ac"
:
3
,
"abbc"
:
5
})
min_count
=
3
subtoken_buckets
=
tokenizer
.
_filter_and_bucket_subtokens
(
subtoken_counts
,
min_count
)
self
.
assertEqual
(
len
(
subtoken_buckets
[
0
]),
0
)
self
.
assertEqual
(
set
(
"b"
),
subtoken_buckets
[
1
])
self
.
assertEqual
(
set
([
"ab"
,
"ac"
]),
subtoken_buckets
[
2
])
self
.
assertEqual
(
len
(
subtoken_buckets
[
3
]),
0
)
self
.
assertEqual
(
set
([
"abbc"
]),
subtoken_buckets
[
4
])
def
test_gen_new_subtoken_list
(
self
):
subtoken_counts
=
collections
.
defaultdict
(
int
,
{
"translate"
:
10
,
"t"
:
40
,
"tr"
:
16
,
"tra"
:
12
})
min_count
=
5
alphabet
=
set
(
"translate"
)
reserved_tokens
=
[
"reserved"
,
"tokens"
]
subtoken_list
,
max_token_length
=
tokenizer
.
_gen_new_subtoken_list
(
subtoken_counts
,
min_count
,
alphabet
,
reserved_tokens
)
# Check that "tra" isn"t in the list (its count should be decremented to 2,
# so it should not be added to the canddiate list).
self
.
assertNotIn
(
"tra"
,
subtoken_list
)
self
.
assertIn
(
"tr"
,
subtoken_list
)
self
.
assertIn
(
"t"
,
subtoken_list
)
self
.
assertEqual
(
len
(
"translate"
),
max_token_length
)
def
test_generate_subtokens
(
self
):
token_counts
=
{
"ab"
:
1
,
"bc"
:
3
,
"abc"
:
5
}
alphabet
=
set
(
"abc_"
)
min_count
=
100
num_iterations
=
1
reserved_tokens
=
[
"reserved"
,
"tokens"
]
vocab_list
=
tokenizer
.
_generate_subtokens
(
token_counts
,
alphabet
,
min_count
,
num_iterations
,
reserved_tokens
)
# Check that reserved tokens are at the front of the list
self
.
assertEqual
(
vocab_list
[:
2
],
reserved_tokens
)
# Check that each character in alphabet is in the vocab list
for
c
in
alphabet
:
self
.
assertIn
(
c
,
vocab_list
)
if
__name__
==
"__main__"
:
unittest
.
main
()
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment