"megatron/git@developer.sourcefind.cn:OpenDAS/megatron-lm.git" did not exist on "0e8f433188246cd09abf1a9c15fee950b2bc6581"
Commit 3bf85a4e authored by Martin Wicke's avatar Martin Wicke Committed by GitHub
Browse files

Merge pull request #2254 from alanyee/master

Update autoencoders
parents da62bb0b 289a2f99
import numpy as np
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from autoencoder_models.DenoisingAutoencoder import AdditiveGaussianNoiseAutoencoder
mnist = input_data.read_data_sets('MNIST_data', one_hot = True)
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
def standard_scale(X_train, X_test):
preprocessor = prep.StandardScaler().fit(X_train)
......@@ -14,10 +18,12 @@ def standard_scale(X_train, X_test):
X_test = preprocessor.transform(X_test)
return X_train, X_test
def get_random_block_from_data(data, batch_size):
start_index = np.random.randint(0, len(data) - batch_size)
return data[start_index:(start_index + batch_size)]
X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)
n_samples = int(mnist.train.num_examples)
......@@ -25,11 +31,12 @@ training_epochs = 20
batch_size = 128
display_step = 1
autoencoder = AdditiveGaussianNoiseAutoencoder(n_input = 784,
n_hidden = 200,
transfer_function = tf.nn.softplus,
optimizer = tf.train.AdamOptimizer(learning_rate = 0.001),
scale = 0.01)
autoencoder = AdditiveGaussianNoiseAutoencoder(
n_input=784,
n_hidden=200,
transfer_function=tf.nn.softplus,
optimizer=tf.train.AdamOptimizer(learning_rate = 0.001),
scale=0.01)
for epoch in range(training_epochs):
avg_cost = 0.
......@@ -45,6 +52,7 @@ for epoch in range(training_epochs):
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost))
print("Epoch:", '%d,' % (epoch + 1),
"Cost:", "{:.9f}".format(avg_cost))
print("Total cost: " + str(autoencoder.calc_total_cost(X_test)))
import numpy as np
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from autoencoder_models.Autoencoder import Autoencoder
mnist = input_data.read_data_sets('MNIST_data', one_hot = True)
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
def standard_scale(X_train, X_test):
preprocessor = prep.StandardScaler().fit(X_train)
......@@ -14,10 +18,12 @@ def standard_scale(X_train, X_test):
X_test = preprocessor.transform(X_test)
return X_train, X_test
def get_random_block_from_data(data, batch_size):
start_index = np.random.randint(0, len(data) - batch_size)
return data[start_index:(start_index + batch_size)]
X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)
n_samples = int(mnist.train.num_examples)
......@@ -25,10 +31,11 @@ training_epochs = 20
batch_size = 128
display_step = 1
autoencoder = Autoencoder(n_input = 784,
n_hidden = 200,
transfer_function = tf.nn.softplus,
optimizer = tf.train.AdamOptimizer(learning_rate = 0.001))
autoencoder = Autoencoder(
n_input=784,
n_hidden=200,
transfer_function=tf.nn.softplus,
optimizer=tf.train.AdamOptimizer(learning_rate=0.001))
for epoch in range(training_epochs):
avg_cost = 0.
......@@ -44,6 +51,7 @@ for epoch in range(training_epochs):
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost))
print("Epoch:", '%d,' % (epoch + 1),
"Cost:", "{:.9f}".format(avg_cost))
print("Total cost: " + str(autoencoder.calc_total_cost(X_test)))
import numpy as np
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from autoencoder_models.DenoisingAutoencoder import MaskingNoiseAutoencoder
mnist = input_data.read_data_sets('MNIST_data', one_hot = True)
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
def standard_scale(X_train, X_test):
preprocessor = prep.StandardScaler().fit(X_train)
......@@ -14,23 +18,25 @@ def standard_scale(X_train, X_test):
X_test = preprocessor.transform(X_test)
return X_train, X_test
def get_random_block_from_data(data, batch_size):
start_index = np.random.randint(0, len(data) - batch_size)
return data[start_index:(start_index + batch_size)]
X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)
X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)
n_samples = int(mnist.train.num_examples)
training_epochs = 100
batch_size = 128
display_step = 1
autoencoder = MaskingNoiseAutoencoder(n_input = 784,
n_hidden = 200,
transfer_function = tf.nn.softplus,
optimizer = tf.train.AdamOptimizer(learning_rate = 0.001),
dropout_probability = 0.95)
autoencoder = MaskingNoiseAutoencoder(
n_input=784,
n_hidden=200,
transfer_function=tf.nn.softplus,
optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
dropout_probability=0.95)
for epoch in range(training_epochs):
avg_cost = 0.
......@@ -43,6 +49,7 @@ for epoch in range(training_epochs):
avg_cost += cost / n_samples * batch_size
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost))
print("Epoch:", '%d,' % (epoch + 1),
"Cost:", "{:.9f}".format(avg_cost))
print("Total cost: " + str(autoencoder.calc_total_cost(X_test)))
import numpy as np
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from autoencoder_models.VariationalAutoencoder import VariationalAutoencoder
mnist = input_data.read_data_sets('MNIST_data', one_hot = True)
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
def min_max_scale(X_train, X_test):
......@@ -29,9 +31,10 @@ training_epochs = 20
batch_size = 128
display_step = 1
autoencoder = VariationalAutoencoder(n_input = 784,
n_hidden = 200,
optimizer = tf.train.AdamOptimizer(learning_rate = 0.001))
autoencoder = VariationalAutoencoder(
n_input=784,
n_hidden=200,
optimizer=tf.train.AdamOptimizer(learning_rate = 0.001))
for epoch in range(training_epochs):
avg_cost = 0.
......@@ -47,6 +50,7 @@ for epoch in range(training_epochs):
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost))
print("Epoch:", '%d,' % (epoch + 1),
"Cost:", "{:.9f}".format(avg_cost))
print("Total cost: " + str(autoencoder.calc_total_cost(X_test)))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment