Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
3858c82b
Commit
3858c82b
authored
Aug 20, 2019
by
A. Unique TensorFlower
Browse files
Merge pull request #7471 from tfboyd:higher_threshold
PiperOrigin-RevId: 264394112
parents
a53371eb
bee1bbc2
Changes
12
Hide whitespace changes
Inline
Side-by-side
Showing
12 changed files
with
119 additions
and
125 deletions
+119
-125
official/recommendation/ncf_keras_benchmark.py
official/recommendation/ncf_keras_benchmark.py
+1
-1
official/staging/shakespeare/shakespeare_benchmark.py
official/staging/shakespeare/shakespeare_benchmark.py
+2
-2
official/transformer/v2/transformer_benchmark.py
official/transformer/v2/transformer_benchmark.py
+14
-7
research/lstm_object_detection/export_tflite_lstd_graph.py
research/lstm_object_detection/export_tflite_lstd_graph.py
+6
-10
research/lstm_object_detection/export_tflite_lstd_graph_lib.py
...rch/lstm_object_detection/export_tflite_lstd_graph_lib.py
+24
-22
research/lstm_object_detection/export_tflite_lstd_model.py
research/lstm_object_detection/export_tflite_lstd_model.py
+28
-31
research/lstm_object_detection/g3doc/exporting_models.md
research/lstm_object_detection/g3doc/exporting_models.md
+13
-13
research/lstm_object_detection/test_tflite_model.py
research/lstm_object_detection/test_tflite_model.py
+18
-21
research/lstm_object_detection/tflite/BUILD
research/lstm_object_detection/tflite/BUILD
+2
-9
research/lstm_object_detection/tflite/WORKSPACE
research/lstm_object_detection/tflite/WORKSPACE
+7
-0
research/lstm_object_detection/tflite/mobile_lstd_tflite_client.cc
...lstm_object_detection/tflite/mobile_lstd_tflite_client.cc
+0
-5
research/lstm_object_detection/tflite/mobile_ssd_tflite_client.h
...h/lstm_object_detection/tflite/mobile_ssd_tflite_client.h
+4
-4
No files found.
official/recommendation/ncf_keras_benchmark.py
View file @
3858c82b
...
...
@@ -117,7 +117,7 @@ class NCFKerasAccuracy(NCFKerasBenchmarkBase):
"""
self
.
_run_and_report_benchmark
(
hr_at_10_min
=
0.61
)
def
_run_and_report_benchmark
(
self
,
hr_at_10_min
=
0.630
,
hr_at_10_max
=
0.64
0
):
def
_run_and_report_benchmark
(
self
,
hr_at_10_min
=
0.630
,
hr_at_10_max
=
0.64
5
):
"""Run test and report results.
Note: Target is 0.635, but some runs are below that level. Until we have
...
...
official/staging/shakespeare/shakespeare_benchmark.py
View file @
3858c82b
...
...
@@ -41,8 +41,8 @@ class ShakespeareBenchmarkBase(PerfZeroBenchmark):
flag_methods
=
[
shakespeare_main
.
define_flags
])
def
_run_and_report_benchmark
(
self
,
top_1_train_min
=
0.9
23
,
top_1_train_max
=
0.9
3
,
top_1_train_min
=
0.9
1
,
top_1_train_max
=
0.9
4
,
warmup
=
1
,
log_steps
=
100
):
"""Report benchmark results by writing to local protobuf file.
...
...
official/transformer/v2/transformer_benchmark.py
View file @
3858c82b
...
...
@@ -280,8 +280,8 @@ class TransformerBigKerasAccuracy(TransformerBenchmark):
FLAGS
.
model_dir
=
self
.
_get_model_dir
(
'benchmark_8_gpu'
)
self
.
_run_and_report_benchmark
(
total_batch_size
=
FLAGS
.
batch_size
,
log_steps
=
FLAGS
.
log_steps
,
bleu_min
=
2
8
,
bleu_max
=
29
)
bleu_min
=
2
7.9
,
bleu_max
=
29
.2
)
def
benchmark_8_gpu_static_batch
(
self
):
"""Benchmark 8 gpu.
...
...
@@ -305,12 +305,19 @@ class TransformerBigKerasAccuracy(TransformerBenchmark):
self
.
_run_and_report_benchmark
(
total_batch_size
=
FLAGS
.
batch_size
,
log_steps
=
FLAGS
.
log_steps
,
bleu_min
=
28
,
bleu_max
=
29
)
bleu_max
=
29
.2
)
def
benchmark_8_gpu_fp16
(
self
):
"""Benchmark 8 gpu with dynamic batch and fp16.
Should converge to 28.4 BLEU (uncased). This has not be verified yet."
Over 6 runs with eval every 20K steps the average highest value was 28.247
(bleu uncased). 28.424 was the highest and 28.09 the lowest. The values are
the highest value seen during a run and occurred at a median of iteration
11. While this could be interpreted as worse than FP32, if looking at the
first iteration at which 28 is passed FP16 performs equal and possibly
better. Although not part of the initial test runs, the highest value
recorded with the arguments below was 28.9 at iteration 12. Iterations are
not epochs, an iteration is a number of steps between evals.
"""
self
.
_setup
()
FLAGS
.
num_gpus
=
8
...
...
@@ -328,7 +335,7 @@ class TransformerBigKerasAccuracy(TransformerBenchmark):
self
.
_run_and_report_benchmark
(
total_batch_size
=
FLAGS
.
batch_size
,
log_steps
=
FLAGS
.
log_steps
,
bleu_min
=
28
,
bleu_max
=
29
)
bleu_max
=
29
.2
)
def
benchmark_8_gpu_static_batch_fp16
(
self
):
"""Benchmark 8 gpu with static batch and fp16.
...
...
@@ -353,7 +360,7 @@ class TransformerBigKerasAccuracy(TransformerBenchmark):
self
.
_run_and_report_benchmark
(
total_batch_size
=
FLAGS
.
batch_size
,
log_steps
=
FLAGS
.
log_steps
,
bleu_min
=
28
,
bleu_max
=
29
)
bleu_max
=
29
.2
)
def
benchmark_xla_8_gpu_static_batch_fp16
(
self
):
"""Benchmark 8 gpu with static batch, XLA, and FP16.
...
...
@@ -380,7 +387,7 @@ class TransformerBigKerasAccuracy(TransformerBenchmark):
self
.
_run_and_report_benchmark
(
total_batch_size
=
FLAGS
.
batch_size
,
log_steps
=
FLAGS
.
log_steps
,
bleu_min
=
28
,
bleu_max
=
29
)
bleu_max
=
29
.2
)
class
TransformerKerasBenchmark
(
TransformerBenchmark
):
...
...
research/lstm_object_detection/export_tflite_lstd_graph.py
View file @
3858c82b
...
...
@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r
"""Exports an LSTM detection model to use with tf-lite.
Outputs file:
...
...
@@ -85,9 +86,8 @@ python lstm_object_detection/export_tflite_lstd_graph.py \
"""
import
tensorflow
as
tf
from
lstm_object_detection
import
export_tflite_lstd_graph_lib
from
lstm_object_detection.utils
import
config_util
from
lstm_object_detection
import
export_tflite_lstd_graph_lib
flags
=
tf
.
app
.
flags
flags
.
DEFINE_string
(
'output_directory'
,
None
,
'Path to write outputs.'
)
...
...
@@ -122,16 +122,12 @@ def main(argv):
flags
.
mark_flag_as_required
(
'trained_checkpoint_prefix'
)
pipeline_config
=
config_util
.
get_configs_from_pipeline_file
(
FLAGS
.
pipeline_config_path
)
FLAGS
.
pipeline_config_path
)
export_tflite_lstd_graph_lib
.
export_tflite_graph
(
pipeline_config
,
FLAGS
.
trained_checkpoint_prefix
,
FLAGS
.
output_directory
,
FLAGS
.
add_postprocessing_op
,
FLAGS
.
max_detections
,
FLAGS
.
max_classes_per_detection
,
use_regular_nms
=
FLAGS
.
use_regular_nms
)
pipeline_config
,
FLAGS
.
trained_checkpoint_prefix
,
FLAGS
.
output_directory
,
FLAGS
.
add_postprocessing_op
,
FLAGS
.
max_detections
,
FLAGS
.
max_classes_per_detection
,
use_regular_nms
=
FLAGS
.
use_regular_nms
)
if
__name__
==
'__main__'
:
...
...
research/lstm_object_detection/export_tflite_lstd_graph_lib.py
View file @
3858c82b
...
...
@@ -12,26 +12,26 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r
"""Exports detection models to use with tf-lite.
See export_tflite_lstd_graph.py for usage.
"""
import
os
import
tempfile
import
numpy
as
np
import
tensorflow
as
tf
from
tensorflow.core.framework
import
attr_value_pb2
from
tensorflow.core.framework
import
types_pb2
from
tensorflow.core.protobuf
import
saver_pb2
from
tensorflow.tools.graph_transforms
import
TransformGraph
from
lstm_object_detection
import
model_builder
from
object_detection
import
exporter
from
object_detection.builders
import
graph_rewriter_builder
from
object_detection.builders
import
post_processing_builder
from
object_detection.core
import
box_list
from
lstm_object_detection
import
model_builder
_DEFAULT_NUM_CHANNELS
=
3
_DEFAULT_NUM_COORD_BOX
=
4
...
...
@@ -84,11 +84,11 @@ def append_postprocessing_op(frozen_graph_def,
num_classes: number of classes in SSD detector
scale_values: scale values is a dict with following key-value pairs
{y_scale: 10, x_scale: 10, h_scale: 5, w_scale: 5} that are used in decode
centersize boxes
centersize boxes
detections_per_class: In regular NonMaxSuppression, number of anchors used
for NonMaxSuppression per class
use_regular_nms: Flag to set postprocessing op to use Regular NMS instead
of
Fast NMS.
for NonMaxSuppression per class
use_regular_nms: Flag to set postprocessing op to use Regular NMS instead
of
Fast NMS.
Returns:
transformed_graph_def: Frozen GraphDef with postprocessing custom op
...
...
@@ -165,9 +165,9 @@ def export_tflite_graph(pipeline_config,
is written to output_dir/tflite_graph.pb.
Args:
pipeline_config: Dictionary of configuration objects. Keys are `model`,
`train_config`,
`train_input_config`, `eval_config`, `eval_input_config`,
`lstm_model`.
Value are the corresponding config objects.
pipeline_config: Dictionary of configuration objects. Keys are `model`,
`train_config`,
`train_input_config`, `eval_config`, `eval_input_config`,
`lstm_model`.
Value are the corresponding config objects.
trained_checkpoint_prefix: a file prefix for the checkpoint containing the
trained parameters of the SSD model.
output_dir: A directory to write the tflite graph and anchor file to.
...
...
@@ -176,9 +176,9 @@ def export_tflite_graph(pipeline_config,
max_detections: Maximum number of detections (boxes) to show
max_classes_per_detection: Number of classes to display per detection
detections_per_class: In regular NonMaxSuppression, number of anchors used
for NonMaxSuppression per class
use_regular_nms: Flag to set postprocessing op to use Regular NMS instead
of
Fast NMS.
for NonMaxSuppression per class
use_regular_nms: Flag to set postprocessing op to use Regular NMS instead
of
Fast NMS.
binary_graph_name: Name of the exported graph file in binary format.
txt_graph_name: Name of the exported graph file in text format.
...
...
@@ -197,10 +197,12 @@ def export_tflite_graph(pipeline_config,
num_classes
=
model_config
.
ssd
.
num_classes
nms_score_threshold
=
{
model_config
.
ssd
.
post_processing
.
batch_non_max_suppression
.
score_threshold
model_config
.
ssd
.
post_processing
.
batch_non_max_suppression
.
score_threshold
}
nms_iou_threshold
=
{
model_config
.
ssd
.
post_processing
.
batch_non_max_suppression
.
iou_threshold
model_config
.
ssd
.
post_processing
.
batch_non_max_suppression
.
iou_threshold
}
scale_values
=
{}
scale_values
[
'y_scale'
]
=
{
...
...
@@ -224,7 +226,7 @@ def export_tflite_graph(pipeline_config,
width
=
image_resizer_config
.
fixed_shape_resizer
.
width
if
image_resizer_config
.
fixed_shape_resizer
.
convert_to_grayscale
:
num_channels
=
1
#TODO(richardbrks) figure out how to make with a None defined batch size
shape
=
[
lstm_config
.
eval_unroll_length
,
height
,
width
,
num_channels
]
else
:
raise
ValueError
(
...
...
@@ -233,14 +235,14 @@ def export_tflite_graph(pipeline_config,
image_resizer_config
.
WhichOneof
(
'image_resizer_oneof'
)))
video_tensor
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
shape
,
name
=
'input_video_tensor'
)
tf
.
float32
,
shape
=
shape
,
name
=
'input_video_tensor'
)
detection_model
=
model_builder
.
build
(
model_config
,
lstm_config
,
is_training
=
False
)
detection_model
=
model_builder
.
build
(
model_config
,
lstm_config
,
is_training
=
False
)
preprocessed_video
,
true_image_shapes
=
detection_model
.
preprocess
(
tf
.
to_float
(
video_tensor
))
tf
.
to_float
(
video_tensor
))
predicted_tensors
=
detection_model
.
predict
(
preprocessed_video
,
true_image_shapes
)
true_image_shapes
)
# predicted_tensors = detection_model.postprocess(predicted_tensors,
# true_image_shapes)
# The score conversion occurs before the post-processing custom op
...
...
@@ -309,7 +311,7 @@ def export_tflite_graph(pipeline_config,
initializer_nodes
=
''
)
# Add new operation to do post processing in a custom op (TF Lite only)
#(richardbrks) Do use this or detection_model.postprocess?
if
add_postprocessing_op
:
transformed_graph_def
=
append_postprocessing_op
(
frozen_graph_def
,
max_detections
,
max_classes_per_detection
,
...
...
research/lstm_object_detection/export_tflite_lstd_model.py
View file @
3858c82b
...
...
@@ -13,8 +13,6 @@
# limitations under the License.
# ==============================================================================
"""Export a LSTD model in tflite format."""
import
os
from
absl
import
flags
import
tensorflow
as
tf
...
...
@@ -31,35 +29,34 @@ FLAGS = flags.FLAGS
def
main
(
_
):
flags
.
mark_flag_as_required
(
'export_path'
)
flags
.
mark_flag_as_required
(
'frozen_graph_path'
)
flags
.
mark_flag_as_required
(
'pipeline_config_path'
)
configs
=
config_util
.
get_configs_from_pipeline_file
(
FLAGS
.
pipeline_config_path
)
lstm_config
=
configs
[
'lstm_model'
]
input_arrays
=
[
'input_video_tensor'
]
output_arrays
=
[
'TFLite_Detection_PostProcess'
,
'TFLite_Detection_PostProcess:1'
,
'TFLite_Detection_PostProcess:2'
,
'TFLite_Detection_PostProcess:3'
,
]
input_shapes
=
{
'input_video_tensor'
:
[
lstm_config
.
eval_unroll_length
,
320
,
320
,
3
],
}
converter
=
tf
.
lite
.
TFLiteConverter
.
from_frozen_graph
(
FLAGS
.
frozen_graph_path
,
input_arrays
,
output_arrays
,
input_shapes
=
input_shapes
)
converter
.
allow_custom_ops
=
True
tflite_model
=
converter
.
convert
()
ofilename
=
os
.
path
.
join
(
FLAGS
.
export_path
)
open
(
ofilename
,
'wb'
).
write
(
tflite_model
)
flags
.
mark_flag_as_required
(
'export_path'
)
flags
.
mark_flag_as_required
(
'frozen_graph_path'
)
flags
.
mark_flag_as_required
(
'pipeline_config_path'
)
configs
=
config_util
.
get_configs_from_pipeline_file
(
FLAGS
.
pipeline_config_path
)
lstm_config
=
configs
[
'lstm_model'
]
input_arrays
=
[
'input_video_tensor'
]
output_arrays
=
[
'TFLite_Detection_PostProcess'
,
'TFLite_Detection_PostProcess:1'
,
'TFLite_Detection_PostProcess:2'
,
'TFLite_Detection_PostProcess:3'
,
]
input_shapes
=
{
'input_video_tensor'
:
[
lstm_config
.
eval_unroll_length
,
320
,
320
,
3
],
}
converter
=
tf
.
lite
.
TFLiteConverter
.
from_frozen_graph
(
FLAGS
.
frozen_graph_path
,
input_arrays
,
output_arrays
,
input_shapes
=
input_shapes
)
converter
.
allow_custom_ops
=
True
tflite_model
=
converter
.
convert
()
ofilename
=
os
.
path
.
join
(
FLAGS
.
export_path
)
open
(
ofilename
,
"wb"
).
write
(
tflite_model
)
if
__name__
==
'__main__'
:
tf
.
app
.
run
()
tf
.
app
.
run
()
research/lstm_object_detection/g3doc/exporting_models.md
View file @
3858c82b
# Exporting a tflite model from a checkpoint
Starting from a trained model checkpoint, creating a tflite model requires 2
steps:
Starting from a trained model checkpoint, creating a tflite model requires 2 steps:
*
exporting a tflite frozen graph from a checkpoint
*
exporting a tflite model from a frozen graph
*
exporting a tflite frozen graph from a checkpoint
*
exporting a tflite model from a frozen graph
## Exporting a tflite frozen graph from a checkpoint
...
...
@@ -20,14 +20,14 @@ python lstm_object_detection/export_tflite_lstd_graph.py \
--pipeline_config_path
${
PIPELINE_CONFIG_PATH
}
\
--trained_checkpoint_prefix
${
TRAINED_CKPT_PREFIX
}
\
--output_directory
${
EXPORT_DIR
}
\
--add_preprocessing_op
--add_preprocessing_op
```
After export, you should see the directory ${EXPORT_DIR} containing the
following files:
After export, you should see the directory ${EXPORT_DIR} containing the following files:
*
`tflite_graph.pb`
*
`tflite_graph.pbtxt`
*
`tflite_graph.pb`
*
`tflite_graph.pbtxt`
## Exporting a tflite model from a frozen graph
...
...
@@ -40,10 +40,10 @@ FROZEN_GRAPH_PATH={path to exported tflite_graph.pb}
EXPORT_PATH
={
path to filename that will be used
for
export
}
PIPELINE_CONFIG_PATH
={
path to pipeline config
}
python lstm_object_detection/export_tflite_lstd_model.py
\
--export_path
${
EXPORT_PATH
}
\
--frozen_graph_path
${
FROZEN_GRAPH_PATH
}
\
--pipeline_config_path
${
PIPELINE_CONFIG_PATH
}
--export_path
${
EXPORT_PATH
}
\
--frozen_graph_path
${
FROZEN_GRAPH_PATH
}
\
--pipeline_config_path
${
PIPELINE_CONFIG_PATH
}
```
After export, you should see the file ${EXPORT_PATH} containing the FlatBuffer
model to be used by an application.
model to be used by an application.
\ No newline at end of file
research/lstm_object_detection/test_tflite_model.py
View file @
3858c82b
...
...
@@ -13,9 +13,6 @@
# limitations under the License.
# ==============================================================================
"""Test a tflite model using random input data."""
from
__future__
import
print_function
from
absl
import
flags
import
numpy
as
np
import
tensorflow
as
tf
...
...
@@ -26,28 +23,28 @@ FLAGS = flags.FLAGS
def
main
(
_
):
flags
.
mark_flag_as_required
(
'model_path'
)
flags
.
mark_flag_as_required
(
'model_path'
)
# Load TFLite model and allocate tensors.
interpreter
=
tf
.
lite
.
Interpreter
(
model_path
=
FLAGS
.
model_path
)
interpreter
.
allocate_tensors
()
# Load TFLite model and allocate tensors.
interpreter
=
tf
.
lite
.
Interpreter
(
model_path
=
FLAGS
.
model_path
)
interpreter
.
allocate_tensors
()
# Get input and output tensors.
input_details
=
interpreter
.
get_input_details
()
print
(
'input_details:'
,
input_details
)
output_details
=
interpreter
.
get_output_details
()
print
(
'output_details:'
,
output_details
)
# Get input and output tensors.
input_details
=
interpreter
.
get_input_details
()
print
'input_details:'
,
input_details
output_details
=
interpreter
.
get_output_details
()
print
'output_details:'
,
output_details
# Test model on random input data.
input_shape
=
input_details
[
0
][
'shape'
]
# change the following line to feed into your own data.
input_data
=
np
.
array
(
np
.
random
.
random_sample
(
input_shape
),
dtype
=
np
.
float32
)
interpreter
.
set_tensor
(
input_details
[
0
][
'index'
],
input_data
)
# Test model on random input data.
input_shape
=
input_details
[
0
][
'shape'
]
# change the following line to feed into your own data.
input_data
=
np
.
array
(
np
.
random
.
random_sample
(
input_shape
),
dtype
=
np
.
float32
)
interpreter
.
set_tensor
(
input_details
[
0
][
'index'
],
input_data
)
interpreter
.
invoke
()
output_data
=
interpreter
.
get_tensor
(
output_details
[
0
][
'index'
])
print
(
output_data
)
interpreter
.
invoke
()
output_data
=
interpreter
.
get_tensor
(
output_details
[
0
][
'index'
])
print
output_data
if
__name__
==
'__main__'
:
tf
.
app
.
run
()
tf
.
app
.
run
()
research/lstm_object_detection/tflite/BUILD
View file @
3858c82b
...
...
@@ -59,19 +59,12 @@ cc_library(
name
=
"mobile_lstd_tflite_client"
,
srcs
=
[
"mobile_lstd_tflite_client.cc"
],
hdrs
=
[
"mobile_lstd_tflite_client.h"
],
defines
=
select
({
"//conditions:default"
:
[],
"enable_edgetpu"
:
[
"ENABLE_EDGETPU"
],
}),
deps
=
[
":mobile_ssd_client"
,
":mobile_ssd_tflite_client"
,
"@com_google_glog//:glog"
,
"@com_google_absl//absl/base:core_headers"
,
"@com_google_glog//:glog"
,
"@org_tensorflow//tensorflow/lite/kernels:builtin_ops"
,
]
+
select
({
"//conditions:default"
:
[],
"enable_edgetpu"
:
[
"@libedgetpu//libedgetpu:header"
],
}),
],
alwayslink
=
1
,
)
research/lstm_object_detection/tflite/WORKSPACE
View file @
3858c82b
...
...
@@ -90,6 +90,13 @@ http_archive(
sha256
=
"79d102c61e2a479a0b7e5fc167bcfaa4832a0c6aad4a75fa7da0480564931bcc"
,
)
#
# http_archive(
# name = "com_google_protobuf",
# strip_prefix = "protobuf-master",
# urls = ["https://github.com/protocolbuffers/protobuf/archive/master.zip"],
# )
# Needed by TensorFlow
http_archive
(
name
=
"io_bazel_rules_closure"
,
...
...
research/lstm_object_detection/tflite/mobile_lstd_tflite_client.cc
View file @
3858c82b
...
...
@@ -66,11 +66,6 @@ bool MobileLSTDTfLiteClient::InitializeInterpreter(
interpreter_
->
UseNNAPI
(
false
);
}
#ifdef ENABLE_EDGETPU
interpreter_
->
SetExternalContext
(
kTfLiteEdgeTpuContext
,
edge_tpu_context_
.
get
());
#endif
// Inputs are: normalized_input_image_tensor, raw_inputs/init_lstm_c,
// raw_inputs/init_lstm_h
if
(
interpreter_
->
inputs
().
size
()
!=
3
)
{
...
...
research/lstm_object_detection/tflite/mobile_ssd_tflite_client.h
View file @
3858c82b
...
...
@@ -76,10 +76,6 @@ class MobileSSDTfLiteClient : public MobileSSDClient {
std
::
unique_ptr
<::
tflite
::
MutableOpResolver
>
resolver_
;
std
::
unique_ptr
<::
tflite
::
Interpreter
>
interpreter_
;
#ifdef ENABLE_EDGETPU
std
::
unique_ptr
<
edgetpu
::
EdgeTpuContext
>
edge_tpu_context_
;
#endif
private:
// MobileSSDTfLiteClient is neither copyable nor movable.
MobileSSDTfLiteClient
(
const
MobileSSDTfLiteClient
&
)
=
delete
;
...
...
@@ -107,6 +103,10 @@ class MobileSSDTfLiteClient : public MobileSSDClient {
bool
FloatInference
(
const
uint8_t
*
input_data
);
bool
QuantizedInference
(
const
uint8_t
*
input_data
);
void
GetOutputBoxesAndScoreTensorsFromUInt8
();
#ifdef ENABLE_EDGETPU
std
::
unique_ptr
<
edgetpu
::
EdgeTpuContext
>
edge_tpu_context_
;
#endif
};
}
// namespace tflite
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment