"torchvision/vscode:/vscode.git/clone" did not exist on "bdf16222f7e734f81af0f6ea6a5f413c7b353237"
Commit 37c12026 authored by Will Cromar's avatar Will Cromar Committed by A. Unique TensorFlower
Browse files

Add 2.x version of MNIST model to model garden.

PiperOrigin-RevId: 277946653
parent 24c619ff
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a simple model on the MNIST dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
import tensorflow_datasets as tfds
from official.utils.flags import core as flags_core
from official.utils.misc import distribution_utils
from official.utils.misc import model_helpers
from official.vision.image_classification import common
FLAGS = flags.FLAGS
def build_model():
"""Constructs the ML model used to predict handwritten digits."""
image = tf.keras.layers.Input(shape=(28, 28, 1))
y = tf.keras.layers.Conv2D(filters=32,
kernel_size=5,
padding='same',
activation='relu')(image)
y = tf.keras.layers.MaxPooling2D(pool_size=(2, 2),
strides=(2, 2),
padding='same')(y)
y = tf.keras.layers.Conv2D(filters=32,
kernel_size=5,
padding='same',
activation='relu')(y)
y = tf.keras.layers.MaxPooling2D(pool_size=(2, 2),
strides=(2, 2),
padding='same')(y)
y = tf.keras.layers.Flatten()(y)
y = tf.keras.layers.Dense(1024, activation='relu')(y)
y = tf.keras.layers.Dropout(0.4)(y)
probs = tf.keras.layers.Dense(10, activation='softmax')(y)
model = tf.keras.models.Model(image, probs, name='mnist')
return model
@tfds.decode.make_decoder(output_dtype=tf.float32)
def decode_image(example, feature):
"""Convert image to float32 and normalize from [0, 255] to [0.0, 1.0]."""
return tf.cast(feature.decode_example(example), dtype=tf.float32) / 255
def run(flags_obj, strategy_override=None):
"""Run MNIST model training and eval loop using native Keras APIs.
Args:
flags_obj: An object containing parsed flag values.
strategy_override: A `tf.distribute.Strategy` object to use for model.
Returns:
Dictionary of training and eval stats.
"""
strategy = strategy_override or distribution_utils.get_distribution_strategy(
distribution_strategy=flags_obj.distribution_strategy,
num_gpus=flags_obj.num_gpus,
tpu_address=flags_obj.tpu)
strategy_scope = distribution_utils.get_strategy_scope(strategy)
mnist = tfds.builder('mnist', data_dir=flags_obj.data_dir)
if flags_obj.download:
mnist.download_and_prepare()
mnist_train, mnist_test = mnist.as_dataset(
split=['train', 'test'],
decoders={'image': decode_image()}, # pylint: disable=no-value-for-parameter
as_supervised=True)
train_input_dataset = mnist_train.cache().repeat().shuffle(
buffer_size=50000).batch(flags_obj.batch_size)
eval_input_dataset = mnist_test.cache().repeat().batch(flags_obj.batch_size)
with strategy_scope:
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
0.05, decay_steps=100000, decay_rate=0.96)
optimizer = tf.keras.optimizers.SGD(learning_rate=lr_schedule)
model = build_model()
model.compile(
optimizer=optimizer,
loss='sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'])
num_train_examples = mnist.info.splits['train'].num_examples
train_steps = num_train_examples // flags_obj.batch_size
train_epochs = flags_obj.train_epochs
ckpt_full_path = os.path.join(flags_obj.model_dir, 'model.ckpt-{epoch:04d}')
callbacks = [
tf.keras.callbacks.ModelCheckpoint(
ckpt_full_path, save_weights_only=True),
tf.keras.callbacks.TensorBoard(log_dir=flags_obj.model_dir),
]
num_eval_examples = mnist.info.splits['test'].num_examples
num_eval_steps = num_eval_examples // flags_obj.batch_size
history = model.fit(
train_input_dataset,
epochs=train_epochs,
steps_per_epoch=train_steps,
callbacks=callbacks,
validation_steps=num_eval_steps,
validation_data=eval_input_dataset,
validation_freq=flags_obj.epochs_between_evals)
export_path = os.path.join(flags_obj.model_dir, 'saved_model')
model.save(export_path, include_optimizer=False)
eval_output = model.evaluate(
eval_input_dataset, steps=num_eval_steps, verbose=2)
stats = common.build_stats(history, eval_output, callbacks)
return stats
def define_mnist_flags():
"""Define command line flags for MNIST model."""
flags_core.define_base(
clean=True,
num_gpu=True,
train_epochs=True,
epochs_between_evals=True,
distribution_strategy=True)
flags_core.define_device()
flags_core.define_distribution()
flags.DEFINE_bool('download', False,
'Whether to download data to `--data_dir`.')
FLAGS.set_default('batch_size', 1024)
def main(_):
model_helpers.apply_clean(FLAGS)
stats = run(flags.FLAGS)
logging.info('Run stats:\n%s', stats)
if __name__ == '__main__':
logging.set_verbosity(logging.INFO)
define_mnist_flags()
app.run(main)
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test the Keras MNIST model on GPU."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
from absl.testing import parameterized
import tensorflow as tf
import tensorflow_datasets as tfds
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.utils.misc import keras_utils
from official.utils.testing import integration
from official.vision.image_classification import mnist_main
def eager_strategy_combinations():
return combinations.combine(
distribution=[
strategy_combinations.default_strategy,
strategy_combinations.tpu_strategy,
strategy_combinations.one_device_strategy_gpu,
],
mode="eager",
)
class KerasMnistTest(tf.test.TestCase, parameterized.TestCase):
"""Unit tests for sample Keras MNIST model."""
_tempdir = None
@classmethod
def setUpClass(cls): # pylint: disable=invalid-name
super(KerasMnistTest, cls).setUpClass()
mnist_main.define_mnist_flags()
def tearDown(self):
super(KerasMnistTest, self).tearDown()
tf.io.gfile.rmtree(self.get_temp_dir())
@combinations.generate(eager_strategy_combinations())
def test_end_to_end(self, distribution):
"""Test Keras MNIST model with `strategy`."""
config = keras_utils.get_config_proto_v1()
tf.compat.v1.enable_eager_execution(config=config)
extra_flags = [
"-train_epochs", "1",
# Let TFDS find the metadata folder automatically
"--data_dir="
]
def _mock_dataset(self, *args, **kwargs): # pylint: disable=unused-argument
"""Generate mock dataset with TPU-compatible dtype (instead of uint8)."""
return tf.data.Dataset.from_tensor_slices({
"image": tf.ones(shape=(10, 28, 28, 1), dtype=tf.int32),
"label": tf.range(10),
})
run = functools.partial(mnist_main.run, strategy_override=distribution)
with tfds.testing.mock_data(as_dataset_fn=_mock_dataset):
integration.run_synthetic(
main=run,
synth=False,
tmp_root=self.get_temp_dir(),
extra_flags=extra_flags)
if __name__ == "__main__":
tf.compat.v1.enable_v2_behavior()
tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment