Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
37b9a136
"docs/git@developer.sourcefind.cn:change/sglang.git" did not exist on "2db4469808158700036de79bd41a9c463bb89bdc"
Commit
37b9a136
authored
Jun 19, 2020
by
syiming
Browse files
remove unused code
parent
cc2642a9
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
11 additions
and
103 deletions
+11
-103
research/object_detection/models/faster_rcnn_resnet_v1_fpn_keras_feature_extractor.py
...dels/faster_rcnn_resnet_v1_fpn_keras_feature_extractor.py
+11
-103
No files found.
research/object_detection/models/faster_rcnn_resnet_v1_fpn_keras_feature_extractor.py
View file @
37b9a136
...
@@ -102,7 +102,7 @@ class FasterRCNNResnetV1FPNKerasFeatureExtractor(
...
@@ -102,7 +102,7 @@ class FasterRCNNResnetV1FPNKerasFeatureExtractor(
self
.
_depth_multiplier
=
depth_multiplier
self
.
_depth_multiplier
=
depth_multiplier
self
.
_additional_layer_depth
=
additional_layer_depth
self
.
_additional_layer_depth
=
additional_layer_depth
self
.
_freeze_batchnorm
=
(
not
batch_norm_trainable
)
self
.
_freeze_batchnorm
=
(
not
batch_norm_trainable
)
self
.
_override_base_feature_extractor_hyperparams
=
self
.
_override_base_feature_extractor_hyperparams
=
\
override_base_feature_extractor_hyperparams
override_base_feature_extractor_hyperparams
self
.
_fpn_min_level
=
fpn_min_level
self
.
_fpn_min_level
=
fpn_min_level
self
.
_fpn_max_level
=
fpn_max_level
self
.
_fpn_max_level
=
fpn_max_level
...
@@ -112,60 +112,6 @@ class FasterRCNNResnetV1FPNKerasFeatureExtractor(
...
@@ -112,60 +112,6 @@ class FasterRCNNResnetV1FPNKerasFeatureExtractor(
self
.
classification_backbone
=
None
self
.
classification_backbone
=
None
self
.
_fpn_features_generator
=
None
self
.
_fpn_features_generator
=
None
def
build
(
self
,):
# TODO: Refine doc string
"""Build Resnet V1 FPN architecture."""
# full_resnet_v1_model = self._resnet_v1_base_model(
# batchnorm_training=self._train_batch_norm,
# conv_hyperparams=(self._conv_hyperparams
# if self._override_base_feature_extractor_hyperparams
# else None),
# min_depth=self._min_depth,
# depth_multiplier=self._depth_multiplier,
# classes=None,
# weights=None,
# include_top=False)
# output_layers = _RESNET_MODEL_OUTPUT_LAYERS[self._resnet_v1_base_model_name]
# outputs = [full_resnet_v1_model.get_layer(output_layer_name).output
# for output_layer_name in output_layers]
# self.classification_backbone = tf.keras.Model(
# inputs=full_resnet_v1_model.inputs,
# outputs=outputs)
# self._depth_fn = lambda d: max(
# int(d * self._depth_multiplier), self._min_depth)
# self._base_fpn_max_level = min(self._fpn_max_level, 5)
# self._num_levels = self._base_fpn_max_level + 1 - self._fpn_min_level
# self._fpn_features_generator = (
# feature_map_generators.KerasFpnTopDownFeatureMaps(
# num_levels=self._num_levels,
# depth=self._depth_fn(self._additional_layer_depth),
# is_training=self._is_training,
# conv_hyperparams=self._conv_hyperparams,
# freeze_batchnorm=self._freeze_batchnorm,
# name='FeatureMaps'))
# Construct coarse feature layers
depth
=
self
.
_depth_fn
(
self
.
_additional_layer_depth
)
for
i
in
range
(
self
.
_base_fpn_max_level
,
self
.
_fpn_max_level
):
layers
=
[]
layer_name
=
'bottom_up_block{}'
.
format
(
i
)
layers
.
append
(
tf
.
keras
.
layers
.
Conv2D
(
depth
,
[
3
,
3
],
padding
=
'SAME'
,
strides
=
2
,
name
=
layer_name
+
'_conv'
,
**
self
.
_conv_hyperparams
.
params
()))
layers
.
append
(
self
.
_conv_hyperparams
.
build_batch_norm
(
training
=
(
self
.
_is_training
and
not
self
.
_freeze_batchnorm
),
name
=
layer_name
+
'_batchnorm'
))
layers
.
append
(
self
.
_conv_hyperparams
.
build_activation_layer
(
name
=
layer_name
))
self
.
_coarse_feature_layers
.
append
(
layers
)
self
.
built
=
True
def
preprocess
(
self
,
resized_inputs
):
def
preprocess
(
self
,
resized_inputs
):
"""Faster R-CNN Resnet V1 preprocessing.
"""Faster R-CNN Resnet V1 preprocessing.
...
@@ -188,28 +134,6 @@ class FasterRCNNResnetV1FPNKerasFeatureExtractor(
...
@@ -188,28 +134,6 @@ class FasterRCNNResnetV1FPNKerasFeatureExtractor(
return
resized_inputs
-
[[
channel_means
]]
return
resized_inputs
-
[[
channel_means
]]
else
:
else
:
return
resized_inputs
return
resized_inputs
# def _extract_proposal_features(self, preprocessed_inputs, scope=None):
# # TODO: doc string
# """"""
# preprocessed_inputs = shape_utils.check_min_image_dim(
# 129, preprocessed_inputs)
# with tf.name_scope(scope):
# with tf.name_scope('ResnetV1FPN'):
# image_features = self.classification_backbone(preprocessed_inputs)
# feature_block_list = []
# for level in range(self._fpn_min_level, self._base_fpn_max_level + 1):
# feature_block_list.append('block{}'.format(level - 1))
# feature_block_map = dict(
# list(zip(self._resnet_block_names, image_features)))
# fpn_input_image_features = [
# (feature_block, feature_block_map[feature_block])
# for feature_block in feature_block_list]
# fpn_features = self._fpn_features_generator(fpn_input_image_features)
# return fpn_features
def
get_proposal_feature_extractor_model
(
self
,
name
=
None
):
def
get_proposal_feature_extractor_model
(
self
,
name
=
None
):
"""Returns a model that extracts first stage RPN features.
"""Returns a model that extracts first stage RPN features.
...
@@ -262,32 +186,16 @@ class FasterRCNNResnetV1FPNKerasFeatureExtractor(
...
@@ -262,32 +186,16 @@ class FasterRCNNResnetV1FPNKerasFeatureExtractor(
for
level
in
range
(
self
.
_fpn_min_level
,
self
.
_base_fpn_max_level
+
1
):
for
level
in
range
(
self
.
_fpn_min_level
,
self
.
_base_fpn_max_level
+
1
):
feature_block_list
.
append
(
'block{}'
.
format
(
level
-
1
))
feature_block_list
.
append
(
'block{}'
.
format
(
level
-
1
))
feature_block_map
=
dict
(
feature_block_map
=
dict
(
list
(
zip
(
self
.
_resnet_block_names
,
image_feature
s
)))
list
(
zip
(
self
.
_resnet_block_names
,
backbone_output
s
)))
fpn_input_image_features
=
[
fpn_input_image_features
=
[
(
feature_block
,
feature_block_map
[
feature_block
])
(
feature_block
,
feature_block_map
[
feature_block
])
for
feature_block
in
feature_block_list
]
for
feature_block
in
feature_block_list
]
fpn_features
=
self
.
_fpn_features_generator
(
fpn_input_image_features
)
fpn_features
=
self
.
_fpn_features_generator
(
fpn_input_image_features
)
feature_extractor_model
=
tf
.
keras
.
models
.
Model
(
feature_extractor_model
=
tf
.
keras
.
models
.
Model
(
inputs
=
self
.
full_resnet_v1_model
.
inputs
,
outputs
=
fpn_features
)
inputs
=
full_resnet_v1_model
.
inputs
,
outputs
=
fpn_features
)
return
feature_extractor_model
return
feature_extractor_model
# def _extract_box_classifier_features(self, proposal_feature_maps, scope=None):
# with tf.name_scope(scope):
# with tf.name_scope('ResnetV1FPN'):
# feature_maps = []
# for level in range(self._fpn_min_level, self._base_fpn_max_level + 1):
# feature_maps.append(proposal_feature_maps['top_down_block{}'.format(level-1)])
# self.last_feature_map = proposal_feature_maps['top_down_block{}'.format(
# self._base_fpn_max_level - 1)]
# for coarse_feature_layers in self._coarse_feature_layers:
# for layer in coarse_feature_layers:
# last_feature_map = layer(last_feature_map)
# feature_maps.append(self.last_feature_map)
# return feature_maps
def
get_box_classifier_feature_extractor_model
(
self
,
name
=
None
):
def
get_box_classifier_feature_extractor_model
(
self
,
name
=
None
):
"""Returns a model that extracts second stage box classifier features.
"""Returns a model that extracts second stage box classifier features.
...
@@ -309,8 +217,8 @@ class FasterRCNNResnetV1FPNKerasFeatureExtractor(
...
@@ -309,8 +217,8 @@ class FasterRCNNResnetV1FPNKerasFeatureExtractor(
with
tf
.
name_scope
(
name
):
with
tf
.
name_scope
(
name
):
with
tf
.
name_scope
(
'ResnetV1FPN'
):
with
tf
.
name_scope
(
'ResnetV1FPN'
):
feature_extractor_model
=
tf
.
keras
.
models
.
Sequential
([
feature_extractor_model
=
tf
.
keras
.
models
.
Sequential
([
Dense
(
unit
=
1024
,
activation
=
'ReLU'
),
tf
.
keras
.
layers
.
Dense
(
unit
=
1024
,
activation
=
'ReLU'
),
Dense
(
unit
=
1024
,
activation
=
'ReLU'
)
tf
.
keras
.
layers
.
Dense
(
unit
=
1024
,
activation
=
'ReLU'
)
])
])
return
feature_extractor_model
return
feature_extractor_model
...
@@ -346,10 +254,10 @@ class FasterRCNNResnet50FPNKerasFeatureExtractor(
...
@@ -346,10 +254,10 @@ class FasterRCNNResnet50FPNKerasFeatureExtractor(
additional_layer_depth: See base class.
additional_layer_depth: See base class.
override_base_feature_extractor_hyperparams: See base class.
override_base_feature_extractor_hyperparams: See base class.
"""
"""
super
(
FasterRCNNResnet50KerasFeatureExtractor
,
self
).
__init__
(
super
(
FasterRCNNResnet50
FPN
KerasFeatureExtractor
,
self
).
__init__
(
is_training
=
is_training
,
is_training
=
is_training
,
first_stage_features_stride
=
first_stage_features_stride
,
first_stage_features_stride
=
first_stage_features_stride
,
conv_hyperparams
=
conv_hyperparam
eter
s
,
conv_hyperparams
=
conv_hyperparams
,
min_depth
=
min_depth
,
min_depth
=
min_depth
,
depth_multiplier
=
depth_multiplier
,
depth_multiplier
=
depth_multiplier
,
resnet_v1_base_model
=
resnet_v1
.
resnet_v1_50
,
resnet_v1_base_model
=
resnet_v1
.
resnet_v1_50
,
...
@@ -391,10 +299,10 @@ class FasterRCNNResnet101FPNKerasFeatureExtractor(
...
@@ -391,10 +299,10 @@ class FasterRCNNResnet101FPNKerasFeatureExtractor(
additional_layer_depth: See base class.
additional_layer_depth: See base class.
override_base_feature_extractor_hyperparams: See base class.
override_base_feature_extractor_hyperparams: See base class.
"""
"""
super
(
FasterRCNNResnet
50
KerasFeatureExtractor
,
self
).
__init__
(
super
(
FasterRCNNResnet
101FPN
KerasFeatureExtractor
,
self
).
__init__
(
is_training
=
is_training
,
is_training
=
is_training
,
first_stage_features_stride
=
first_stage_features_stride
,
first_stage_features_stride
=
first_stage_features_stride
,
conv_hyperparams
=
conv_hyperparam
eter
s
,
conv_hyperparams
=
conv_hyperparams
,
min_depth
=
min_depth
,
min_depth
=
min_depth
,
depth_multiplier
=
depth_multiplier
,
depth_multiplier
=
depth_multiplier
,
resnet_v1_base_model
=
resnet_v1
.
resnet_v1_101
,
resnet_v1_base_model
=
resnet_v1
.
resnet_v1_101
,
...
@@ -438,10 +346,10 @@ class FasterRCNNResnet152FPNKerasFeatureExtractor(
...
@@ -438,10 +346,10 @@ class FasterRCNNResnet152FPNKerasFeatureExtractor(
additional_layer_depth: See base class.
additional_layer_depth: See base class.
override_base_feature_extractor_hyperparams: See base class.
override_base_feature_extractor_hyperparams: See base class.
"""
"""
super
(
FasterRCNNResnet
50
KerasFeatureExtractor
,
self
).
__init__
(
super
(
FasterRCNNResnet
152FPN
KerasFeatureExtractor
,
self
).
__init__
(
is_training
=
is_training
,
is_training
=
is_training
,
first_stage_features_stride
=
first_stage_features_stride
,
first_stage_features_stride
=
first_stage_features_stride
,
conv_hyperparams
=
conv_hyperparam
eter
s
,
conv_hyperparams
=
conv_hyperparams
,
min_depth
=
min_depth
,
min_depth
=
min_depth
,
depth_multiplier
=
depth_multiplier
,
depth_multiplier
=
depth_multiplier
,
resnet_v1_base_model
=
resnet_v1
.
resnet_v1_152
,
resnet_v1_base_model
=
resnet_v1
.
resnet_v1_152
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment