"docs/git@developer.sourcefind.cn:change/sglang.git" did not exist on "95575aa76a0716aa018ac2359dc63b934f94ff51"
Commit 36d44db9 authored by Hongkun Yu's avatar Hongkun Yu Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 388118554
parent 45e66fd4
...@@ -87,10 +87,8 @@ class BertClassifierTest(keras_parameterized.TestCase): ...@@ -87,10 +87,8 @@ class BertClassifierTest(keras_parameterized.TestCase):
inner_dim=0, num_classes=4))) inner_dim=0, num_classes=4)))
def test_serialize_deserialize(self, cls_head): def test_serialize_deserialize(self, cls_head):
"""Validate that the BERT trainer can be serialized and deserialized.""" """Validate that the BERT trainer can be serialized and deserialized."""
# Build a transformer network to use within the BERT trainer. (Here, we use # Build a transformer network to use within the BERT trainer.
# a short sequence_length for convenience.) test_network = networks.BertEncoder(vocab_size=100, num_layers=2)
test_network = networks.BertEncoder(
vocab_size=100, num_layers=2, sequence_length=5)
# Create a BERT trainer with the created network. (Note that all the args # Create a BERT trainer with the created network. (Note that all the args
# are different, so we can catch any serialization mismatches.) # are different, so we can catch any serialization mismatches.)
......
...@@ -67,10 +67,8 @@ class BertPretrainerTest(keras_parameterized.TestCase): ...@@ -67,10 +67,8 @@ class BertPretrainerTest(keras_parameterized.TestCase):
def test_bert_trainer_tensor_call(self): def test_bert_trainer_tensor_call(self):
"""Validate that the Keras object can be invoked.""" """Validate that the Keras object can be invoked."""
# Build a transformer network to use within the BERT trainer. (Here, we use # Build a transformer network to use within the BERT trainer.
# a short sequence_length for convenience.) test_network = networks.BertEncoder(vocab_size=100, num_layers=2)
test_network = networks.BertEncoder(
vocab_size=100, num_layers=2, sequence_length=2)
# Create a BERT trainer with the created network. # Create a BERT trainer with the created network.
bert_trainer_model = bert_pretrainer.BertPretrainer( bert_trainer_model = bert_pretrainer.BertPretrainer(
...@@ -213,10 +211,8 @@ class BertPretrainerV2Test(keras_parameterized.TestCase): ...@@ -213,10 +211,8 @@ class BertPretrainerV2Test(keras_parameterized.TestCase):
def test_v2_serialize_deserialize(self): def test_v2_serialize_deserialize(self):
"""Validate that the BERT trainer can be serialized and deserialized.""" """Validate that the BERT trainer can be serialized and deserialized."""
# Build a transformer network to use within the BERT trainer. (Here, we use # Build a transformer network to use within the BERT trainer.
# a short sequence_length for convenience.) test_network = networks.BertEncoder(vocab_size=100, num_layers=2)
test_network = networks.BertEncoder(
vocab_size=100, num_layers=2, sequence_length=5)
# Create a BERT trainer with the created network. (Note that all the args # Create a BERT trainer with the created network. (Note that all the args
# are different, so we can catch any serialization mismatches.) # are different, so we can catch any serialization mismatches.)
......
...@@ -93,10 +93,8 @@ class BertSpanLabelerTest(keras_parameterized.TestCase): ...@@ -93,10 +93,8 @@ class BertSpanLabelerTest(keras_parameterized.TestCase):
def test_serialize_deserialize(self): def test_serialize_deserialize(self):
"""Validate that the BERT trainer can be serialized and deserialized.""" """Validate that the BERT trainer can be serialized and deserialized."""
# Build a transformer network to use within the BERT trainer. (Here, we use # Build a transformer network to use within the BERT trainer.
# a short sequence_length for convenience.) test_network = networks.BertEncoder(vocab_size=100, num_layers=2)
test_network = networks.BertEncoder(
vocab_size=100, num_layers=2, sequence_length=5)
# Create a BERT trainer with the created network. (Note that all the args # Create a BERT trainer with the created network. (Note that all the args
# are different, so we can catch any serialization mismatches.) # are different, so we can catch any serialization mismatches.)
......
...@@ -37,7 +37,6 @@ class DualEncoderTest(keras_parameterized.TestCase): ...@@ -37,7 +37,6 @@ class DualEncoderTest(keras_parameterized.TestCase):
vocab_size=vocab_size, vocab_size=vocab_size,
num_layers=2, num_layers=2,
hidden_size=hidden_size, hidden_size=hidden_size,
sequence_length=sequence_length,
dict_outputs=True) dict_outputs=True)
# Create a dual encoder model with the created network. # Create a dual encoder model with the created network.
...@@ -72,11 +71,9 @@ class DualEncoderTest(keras_parameterized.TestCase): ...@@ -72,11 +71,9 @@ class DualEncoderTest(keras_parameterized.TestCase):
@parameterized.parameters((192, 'logits'), (768, 'predictions')) @parameterized.parameters((192, 'logits'), (768, 'predictions'))
def test_dual_encoder_tensor_call(self, hidden_size, output): def test_dual_encoder_tensor_call(self, hidden_size, output):
"""Validate that the Keras object can be invoked.""" """Validate that the Keras object can be invoked."""
# Build a transformer network to use within the dual encoder model. (Here, # Build a transformer network to use within the dual encoder model.
# we use # a short sequence_length for convenience.)
sequence_length = 2 sequence_length = 2
test_network = networks.BertEncoder( test_network = networks.BertEncoder(vocab_size=100, num_layers=2)
vocab_size=100, num_layers=2, sequence_length=sequence_length)
# Create a dual encoder model with the created network. # Create a dual encoder model with the created network.
dual_encoder_model = dual_encoder.DualEncoder( dual_encoder_model = dual_encoder.DualEncoder(
...@@ -98,18 +95,16 @@ class DualEncoderTest(keras_parameterized.TestCase): ...@@ -98,18 +95,16 @@ class DualEncoderTest(keras_parameterized.TestCase):
def test_serialize_deserialize(self): def test_serialize_deserialize(self):
"""Validate that the dual encoder model can be serialized / deserialized.""" """Validate that the dual encoder model can be serialized / deserialized."""
# Build a transformer network to use within the dual encoder model. (Here, # Build a transformer network to use within the dual encoder model.
# we use a short sequence_length for convenience.)
sequence_length = 32 sequence_length = 32
test_network = networks.BertEncoder( test_network = networks.BertEncoder(vocab_size=100, num_layers=2)
vocab_size=100, num_layers=2, sequence_length=sequence_length)
# Create a dual encoder model with the created network. (Note that all the # Create a dual encoder model with the created network. (Note that all the
# args are different, so we can catch any serialization mismatches.) # args are different, so we can catch any serialization mismatches.)
dual_encoder_model = dual_encoder.DualEncoder( dual_encoder_model = dual_encoder.DualEncoder(
test_network, max_seq_length=sequence_length, output='predictions') test_network, max_seq_length=sequence_length, output='predictions')
# Create another dual encoder model via serialization and deserialization. # Create another dual encoder moel via serialization and deserialization.
config = dual_encoder_model.get_config() config = dual_encoder_model.get_config()
new_dual_encoder = dual_encoder.DualEncoder.from_config(config) new_dual_encoder = dual_encoder.DualEncoder.from_config(config)
......
...@@ -100,7 +100,6 @@ class ElectraPretrainerTest(keras_parameterized.TestCase): ...@@ -100,7 +100,6 @@ class ElectraPretrainerTest(keras_parameterized.TestCase):
discriminator_network=test_discriminator_network, discriminator_network=test_discriminator_network,
vocab_size=100, vocab_size=100,
num_classes=2, num_classes=2,
sequence_length=3,
num_token_predictions=2) num_token_predictions=2)
# Create a set of 2-dimensional data tensors to feed into the model. # Create a set of 2-dimensional data tensors to feed into the model.
...@@ -138,7 +137,6 @@ class ElectraPretrainerTest(keras_parameterized.TestCase): ...@@ -138,7 +137,6 @@ class ElectraPretrainerTest(keras_parameterized.TestCase):
discriminator_network=test_discriminator_network, discriminator_network=test_discriminator_network,
vocab_size=100, vocab_size=100,
num_classes=2, num_classes=2,
sequence_length=3,
num_token_predictions=2) num_token_predictions=2)
# Create another BERT trainer via serialization and deserialization. # Create another BERT trainer via serialization and deserialization.
......
...@@ -15,6 +15,8 @@ ...@@ -15,6 +15,8 @@
"""Transformer-based text encoder network.""" """Transformer-based text encoder network."""
# pylint: disable=g-classes-have-attributes # pylint: disable=g-classes-have-attributes
import collections import collections
from absl import logging
import tensorflow as tf import tensorflow as tf
from official.modeling import activations from official.modeling import activations
...@@ -47,8 +49,6 @@ class BertEncoder(keras_nlp.encoders.BertEncoder): ...@@ -47,8 +49,6 @@ class BertEncoder(keras_nlp.encoders.BertEncoder):
num_layers: The number of transformer layers. num_layers: The number of transformer layers.
num_attention_heads: The number of attention heads for each transformer. The num_attention_heads: The number of attention heads for each transformer. The
hidden size must be divisible by the number of attention heads. hidden size must be divisible by the number of attention heads.
sequence_length: [Deprecated]. TODO(hongkuny): remove this argument once no
user is using it.
max_sequence_length: The maximum sequence length that this encoder can max_sequence_length: The maximum sequence length that this encoder can
consume. If None, max_sequence_length uses the value from sequence length. consume. If None, max_sequence_length uses the value from sequence length.
This determines the variable shape for positional embeddings. This determines the variable shape for positional embeddings.
...@@ -87,7 +87,6 @@ class BertEncoder(keras_nlp.encoders.BertEncoder): ...@@ -87,7 +87,6 @@ class BertEncoder(keras_nlp.encoders.BertEncoder):
hidden_size=768, hidden_size=768,
num_layers=12, num_layers=12,
num_attention_heads=12, num_attention_heads=12,
sequence_length=None,
max_sequence_length=512, max_sequence_length=512,
type_vocab_size=16, type_vocab_size=16,
intermediate_size=3072, intermediate_size=3072,
...@@ -126,6 +125,11 @@ class BertEncoder(keras_nlp.encoders.BertEncoder): ...@@ -126,6 +125,11 @@ class BertEncoder(keras_nlp.encoders.BertEncoder):
embedding_width=embedding_width, embedding_width=embedding_width,
embedding_layer=embedding_layer, embedding_layer=embedding_layer,
norm_first=norm_first) norm_first=norm_first)
if 'sequence_length' in kwargs:
kwargs.pop('sequence_length')
logging.warning('`sequence_length` is a deprecated argument to '
'`BertEncoder`, which has no effect for a while. Please '
'remove `sequence_length` argument.')
self._embedding_layer_instance = embedding_layer self._embedding_layer_instance = embedding_layer
......
...@@ -458,7 +458,6 @@ def get_nhnet_layers(params: configs.NHNetConfig): ...@@ -458,7 +458,6 @@ def get_nhnet_layers(params: configs.NHNetConfig):
activation=tf_utils.get_activation(bert_config.hidden_act), activation=tf_utils.get_activation(bert_config.hidden_act),
dropout_rate=bert_config.hidden_dropout_prob, dropout_rate=bert_config.hidden_dropout_prob,
attention_dropout_rate=bert_config.attention_probs_dropout_prob, attention_dropout_rate=bert_config.attention_probs_dropout_prob,
sequence_length=None,
max_sequence_length=bert_config.max_position_embeddings, max_sequence_length=bert_config.max_position_embeddings,
type_vocab_size=bert_config.type_vocab_size, type_vocab_size=bert_config.type_vocab_size,
initializer=tf.keras.initializers.TruncatedNormal( initializer=tf.keras.initializers.TruncatedNormal(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment