Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
35fda973
"git@developer.sourcefind.cn:OpenDAS/megatron-lm.git" did not exist on "ee57e0865a7586ad2e2e895b232a311246a518ed"
Commit
35fda973
authored
Jun 30, 2020
by
Kaushik Shivakumar
Browse files
work on fixing
parent
66e8a904
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
104 additions
and
98 deletions
+104
-98
research/object_detection/meta_architectures/context_rcnn_lib.py
...h/object_detection/meta_architectures/context_rcnn_lib.py
+93
-86
research/object_detection/meta_architectures/context_rcnn_lib_test.py
...ect_detection/meta_architectures/context_rcnn_lib_test.py
+11
-12
No files found.
research/object_detection/meta_architectures/context_rcnn_lib.py
View file @
35fda973
...
@@ -50,130 +50,136 @@ class ContextProjection(tf.keras.layers.Layer):
...
@@ -50,130 +50,136 @@ class ContextProjection(tf.keras.layers.Layer):
return
self
.
projection
(
self
.
batch_norm
(
input_features
,
is_training
))
return
self
.
projection
(
self
.
batch_norm
(
input_features
,
is_training
))
class
AttentionBlock
(
tf
.
keras
.
layers
.
Layer
):
class
AttentionBlock
(
tf
.
keras
.
layers
.
Layer
):
def
__init__
(
self
,
bottleneck_dimension
,
attention_temperature
,
freeze_batchnorm
,
**
kwargs
):
def
__init__
(
self
,
bottleneck_dimension
,
attention_temperature
,
freeze_batchnorm
,
output_dimension
=
None
,
**
kwargs
):
self
.
key_proj
=
ContextProjection
(
bottleneck_dimension
,
freeze_batchnorm
)
self
.
key_proj
=
ContextProjection
(
bottleneck_dimension
,
freeze_batchnorm
)
self
.
val_proj
=
ContextProjection
(
bottleneck_dimension
,
freeze_batchnorm
)
self
.
val_proj
=
ContextProjection
(
bottleneck_dimension
,
freeze_batchnorm
)
self
.
query_proj
=
ContextProjection
(
bottleneck_dimension
,
freeze_batchnorm
)
self
.
query_proj
=
ContextProjection
(
bottleneck_dimension
,
freeze_batchnorm
)
self
.
attention_temperature
=
attention_temperature
self
.
attention_temperature
=
attention_temperature
self
.
freeze_batchnorm
=
freeze_batchnorm
self
.
freeze_batchnorm
=
freeze_batchnorm
self
.
bottleneck_dimension
=
bottleneck_dimension
self
.
bottleneck_dimension
=
bottleneck_dimension
if
output_dimension
:
self
.
output_dimension
=
output_dimension
super
(
AttentionBlock
,
self
).
__init__
(
**
kwargs
)
super
(
AttentionBlock
,
self
).
__init__
(
**
kwargs
)
def
set_output_dimension
(
self
,
new_output_dimension
):
self
.
output_dimension
=
new_output_dimension
def
build
(
self
,
input_shapes
):
def
build
(
self
,
input_shapes
):
self
.
feature_proj
=
ContextProjection
(
input_shapes
[
0
][
-
1
],
self
.
freeze_batchnorm
)
print
(
input_shapes
)
self
.
feature_proj
=
ContextProjection
(
self
.
output_dimension
,
self
.
freeze_batchnorm
)
#self.key_proj.build(input_shapes[0])
#self.key_proj.build(input_shapes[0])
#self.val_proj.build(input_shapes[0])
#self.val_proj.build(input_shapes[0])
#self.query_proj.build(input_shapes[0])
#self.query_proj.build(input_shapes[0])
#self.feature_proj.build(input_shapes[0])
#self.feature_proj.build(input_shapes[0])
pass
pass
def
filter_weight_value
(
self
,
weights
,
values
,
valid_mask
):
def
call
(
self
,
input_features
,
is_training
,
valid_mask
):
"""Filters weights and values based on valid_mask.
input_features
,
context_features
=
input_features
with
tf
.
variable_scope
(
"AttentionBlock"
):
queries
=
project_features
(
input_features
,
self
.
bottleneck_dimension
,
is_training
,
self
.
query_proj
,
normalize
=
True
)
keys
=
project_features
(
context_features
,
self
.
bottleneck_dimension
,
is_training
,
self
.
key_proj
,
normalize
=
True
)
values
=
project_features
(
context_features
,
self
.
bottleneck_dimension
,
is_training
,
self
.
val_proj
,
normalize
=
True
)
_NEGATIVE_PADDING_VALUE will be added to invalid elements in the weights to
weights
=
tf
.
matmul
(
queries
,
keys
,
transpose_b
=
True
)
avoid their contribution in softmax. 0 will be set for the invalid elements in
the values.
Args:
weights
,
values
=
filter_weight_value
(
weights
,
values
,
valid_mask
)
weights: A float Tensor of shape [batch_size, input_size, context_size].
values: A float Tensor of shape [batch_size, context_size,
projected_dimension].
valid_mask: A boolean Tensor of shape [batch_size, context_size]. True means
valid and False means invalid.
Returns:
weights
=
tf
.
nn
.
softmax
(
weights
/
self
.
attention_temperature
)
weights: A float Tensor of shape [batch_size, input_size, context_size].
values: A float Tensor of shape [batch_size, context_size,
projected_dimension].
Raises:
features
=
tf
.
matmul
(
weights
,
values
)
ValueError: If shape of doesn't match.
output_features
=
project_features
(
"""
features
,
self
.
output_dimension
,
is_training
,
w_batch_size
,
_
,
w_context_size
=
weights
.
shape
self
.
feature_proj
,
normalize
=
False
)
v_batch_size
,
v_context_size
,
_
=
values
.
shape
return
output_features
m_batch_size
,
m_context_size
=
valid_mask
.
shape
if
w_batch_size
!=
v_batch_size
or
v_batch_size
!=
m_batch_size
:
raise
ValueError
(
"Please make sure the first dimension of the input"
" tensors are the same."
)
if
w_context_size
!=
v_context_size
:
raise
ValueError
(
"Please make sure the third dimension of weights matches"
" the second dimension of values."
)
if
w_context_size
!=
m_context_size
:
def
filter_weight_value
(
weights
,
values
,
valid_mask
):
raise
ValueError
(
"Please make sure the third dimension of the weights"
"""Filters weights and values based on valid_mask.
" matches the second dimension of the valid_mask."
)
valid_mask
=
valid_mask
[...,
tf
.
newaxis
]
_NEGATIVE_PADDING_VALUE will be added to invalid elements in the weights to
avoid their contribution in softmax. 0 will be set for the invalid elements in
the values.
# Force the invalid weights to be very negative so it won't contribute to
Args:
# the softmax
.
weights: A float Tensor of shape [batch_size, input_size, context_size]
.
weights
+=
tf
.
transpose
(
values: A float Tensor of shape [batch_size, context_size,
tf
.
cast
(
tf
.
math
.
logical_not
(
valid_mask
),
weights
.
dtype
)
*
projected_dimension].
_NEGATIVE_PADDING_VALUE
,
valid_mask: A boolean Tensor of shape [batch_size, context_size]. True means
perm
=
[
0
,
2
,
1
])
valid and False means invalid.
# Force the invalid values to be 0.
Returns:
values
*=
tf
.
cast
(
valid_mask
,
values
.
dtype
)
weights: A float Tensor of shape [batch_size, input_size, context_size].
values: A float Tensor of shape [batch_size, context_size,
projected_dimension].
return
weights
,
values
Raises:
ValueError: If shape of doesn't match.
"""
w_batch_size
,
_
,
w_context_size
=
weights
.
shape
v_batch_size
,
v_context_size
,
_
=
values
.
shape
m_batch_size
,
m_context_size
=
valid_mask
.
shape
if
w_batch_size
!=
v_batch_size
or
v_batch_size
!=
m_batch_size
:
raise
ValueError
(
"Please make sure the first dimension of the input"
" tensors are the same."
)
def
run_projection
(
self
,
features
,
bottleneck_dimension
,
is_training
,
layer
,
normalize
=
True
):
if
w_context_size
!=
v_context_size
:
"""Projects features to another feature space.
raise
ValueError
(
"Please make sure the third dimension of weights matches"
" the second dimension of values."
)
Args:
if
w_context_size
!=
m_context_size
:
features: A float Tensor of shape [batch_size, features_size,
raise
ValueError
(
"Please make sure the third dimension of the weights"
num_features].
" matches the second dimension of the valid_mask."
)
projection_dimension: A int32 Tensor.
is_training: A boolean Tensor (affecting batch normalization).
node: Contains a custom layer specific to the particular operation
being performed (key, value, query, features)
normalize: A boolean Tensor. If true, the output features will be l2
normalized on the last dimension.
Returns:
valid_mask
=
valid_mask
[...,
tf
.
newaxis
]
A float Tensor of shape [batch, features_size, projection_dimension].
"""
shape_arr
=
features
.
shape
batch_size
,
_
,
num_features
=
shape_arr
print
(
"Orig"
,
features
.
shape
)
features
=
tf
.
reshape
(
features
,
[
-
1
,
num_features
])
projected_features
=
layer
(
features
,
is_training
)
# Force the invalid weights to be very negative so it won't contribute to
# the softmax.
weights
+=
tf
.
transpose
(
tf
.
cast
(
tf
.
math
.
logical_not
(
valid_mask
),
weights
.
dtype
)
*
_NEGATIVE_PADDING_VALUE
,
perm
=
[
0
,
2
,
1
])
projected_features
=
tf
.
reshape
(
projected_features
,
[
batch_size
,
-
1
,
bottleneck_dimension
])
# Force the invalid values to be 0.
print
(
projected_features
.
sha
pe
)
values
*=
tf
.
cast
(
valid_mask
,
values
.
dty
pe
)
if
normalize
:
return
weights
,
values
projected_features
=
tf
.
keras
.
backend
.
l2_normalize
(
projected_features
,
axis
=-
1
)
return
projected_features
def
project_features
(
features
,
bottleneck_dimension
,
is_training
,
layer
,
normalize
=
True
):
"""Projects features to another feature space.
def
call
(
self
,
input_features
,
is_training
,
valid_mask
):
Args:
input_features
,
context_features
=
input_features
features: A float Tensor of shape [batch_size, features_size,
with
tf
.
variable_scope
(
"AttentionBlock"
):
num_features].
queries
=
self
.
run_projection
(
projection_dimension: A int32 Tensor.
input_features
,
self
.
bottleneck_dimension
,
is_training
,
is_training: A boolean Tensor (affecting batch normalization).
self
.
query_proj
,
normalize
=
True
)
node: Contains a custom layer specific to the particular operation
keys
=
self
.
run_projection
(
being performed (key, value, query, features)
context_features
,
self
.
bottleneck_dimension
,
is_training
,
normalize: A boolean Tensor. If true, the output features will be l2
self
.
key_proj
,
normalize
=
True
)
normalized on the last dimension.
values
=
self
.
run_projection
(
context_features
,
self
.
bottleneck_dimension
,
is_training
,
self
.
val_proj
,
normalize
=
True
)
weights
=
tf
.
matmul
(
queries
,
keys
,
transpose_b
=
True
)
Returns:
A float Tensor of shape [batch, features_size, projection_dimension].
"""
shape_arr
=
features
.
shape
batch_size
,
_
,
num_features
=
shape_arr
print
(
"Orig"
,
features
.
shape
)
features
=
tf
.
reshape
(
features
,
[
-
1
,
num_features
])
weights
,
values
=
self
.
filter_weight_value
(
weights
,
values
,
valid_mask
)
projected_features
=
layer
(
features
,
is_training
)
weights
=
tf
.
nn
.
softmax
(
weights
/
self
.
attention_temperature
)
projected_features
=
tf
.
reshape
(
projected_features
,
[
batch_size
,
-
1
,
bottleneck_dimension
])
print
(
projected_features
.
shape
)
features
=
tf
.
matmul
(
weights
,
values
)
if
normalize
:
output_features
=
self
.
run_projection
(
projected_features
=
tf
.
keras
.
backend
.
l2_normalize
(
projected_features
,
axis
=-
1
)
features
,
input_features
.
shape
[
-
1
],
is_training
,
self
.
feature_proj
,
normalize
=
False
)
return
output_features
return
projected_features
def
compute_valid_mask
(
num_valid_elements
,
num_elements
):
def
compute_valid_mask
(
num_valid_elements
,
num_elements
):
"""Computes mask of valid entries within padded context feature.
"""Computes mask of valid entries within padded context feature.
...
@@ -222,6 +228,7 @@ def compute_box_context_attention(box_features, context_features,
...
@@ -222,6 +228,7 @@ def compute_box_context_attention(box_features, context_features,
valid_mask
=
compute_valid_mask
(
valid_context_size
,
context_size
)
valid_mask
=
compute_valid_mask
(
valid_context_size
,
context_size
)
channels
=
box_features
.
shape
[
-
1
]
channels
=
box_features
.
shape
[
-
1
]
attention_block
.
set_output_dimension
(
channels
)
# Average pools over height and width dimension so that the shape of
# Average pools over height and width dimension so that the shape of
# box_features becomes [batch_size, max_num_proposals, channels].
# box_features becomes [batch_size, max_num_proposals, channels].
...
...
research/object_detection/meta_architectures/context_rcnn_lib_test.py
View file @
35fda973
...
@@ -80,9 +80,9 @@ class ContextRcnnLibTest(parameterized.TestCase, test_case.TestCase,
...
@@ -80,9 +80,9 @@ class ContextRcnnLibTest(parameterized.TestCase, test_case.TestCase,
projected_features
=
context_rcnn_lib
.
project_features
(
projected_features
=
context_rcnn_lib
.
project_features
(
features
,
features
,
projection_dimension
,
projection_dimension
,
is_training
=
is_training
,
is_training
,
normalize
=
normalize
,
context_rcnn_lib
.
ContextProjection
(
projection_dimension
,
False
)
,
no
de
=
context_rcnn_lib
.
ContextProjection
(
projection_dimension
,
Fals
e
)
)
no
rmalize
=
normaliz
e
)
# Makes sure the shape is correct.
# Makes sure the shape is correct.
self
.
assertAllEqual
(
projected_features
.
shape
,
[
2
,
3
,
projection_dimension
])
self
.
assertAllEqual
(
projected_features
.
shape
,
[
2
,
3
,
projection_dimension
])
...
@@ -100,15 +100,15 @@ class ContextRcnnLibTest(parameterized.TestCase, test_case.TestCase,
...
@@ -100,15 +100,15 @@ class ContextRcnnLibTest(parameterized.TestCase, test_case.TestCase,
context_features
=
tf
.
ones
([
2
,
2
,
3
],
tf
.
float32
)
context_features
=
tf
.
ones
([
2
,
2
,
3
],
tf
.
float32
)
valid_mask
=
tf
.
constant
([[
True
,
True
],
[
False
,
False
]],
tf
.
bool
)
valid_mask
=
tf
.
constant
([[
True
,
True
],
[
False
,
False
]],
tf
.
bool
)
is_training
=
False
is_training
=
False
projection_layers
=
{
context_rcnn_lib
.
KEY_NAME
:
context_rcnn_lib
.
ContextProjection
(
bottleneck_dimension
,
False
),
context_rcnn_lib
.
VALUE_NAME
:
context_rcnn_lib
.
ContextProjection
(
bottleneck_dimension
,
False
),
#
projection_layers = {context_rcnn_lib.KEY_NAME: context_rcnn_lib.ContextProjection(bottleneck_dimension, False), context_rcnn_lib.VALUE_NAME: context_rcnn_lib.ContextProjection(bottleneck_dimension, False),
context_rcnn_lib
.
QUERY_NAME
:
context_rcnn_lib
.
ContextProjection
(
bottleneck_dimension
,
False
)}
#
context_rcnn_lib.QUERY_NAME: context_rcnn_lib.ContextProjection(bottleneck_dimension, False)}
#Add in the feature layer because this is further down the pipeline and it isn't automatically injected.
#Add in the feature layer because this is further down the pipeline and it isn't automatically injected.
projection_layers
[
'feature'
]
=
context_rcnn_lib
.
ContextProjection
(
output_dimension
,
False
)
#
projection_layers['feature'] = context_rcnn_lib.ContextProjection(output_dimension, False)
output_features
=
context_rcnn_lib
.
a
ttention
_b
lock
(
attention_block
=
context_rcnn_lib
.
A
ttention
B
lock
(
bottleneck_dimension
,
attention_temperature
,
False
)
input_features
,
context_features
,
bottleneck
_dimension
,
attention_block
.
set_output_dimension
(
output
_dimension
)
output_
dimension
,
attention_
temper
ature
,
valid_mask
,
is_training
,
projection_layers
)
output_
features
=
attention_
block
([
input_fe
ature
s
,
context_features
],
is_training
,
valid_mask
)
# Makes sure the shape is correct.
# Makes sure the shape is correct.
self
.
assertAllEqual
(
output_features
.
shape
,
[
2
,
3
,
output_dimension
])
self
.
assertAllEqual
(
output_features
.
shape
,
[
2
,
3
,
output_dimension
])
...
@@ -120,12 +120,11 @@ class ContextRcnnLibTest(parameterized.TestCase, test_case.TestCase,
...
@@ -120,12 +120,11 @@ class ContextRcnnLibTest(parameterized.TestCase, test_case.TestCase,
valid_context_size
=
tf
.
constant
((
2
,
3
),
tf
.
int32
)
valid_context_size
=
tf
.
constant
((
2
,
3
),
tf
.
int32
)
bottleneck_dimension
=
10
bottleneck_dimension
=
10
attention_temperature
=
1
attention_temperature
=
1
projection_layers
=
{
context_rcnn_lib
.
KEY_NAME
:
context_rcnn_lib
.
ContextProjection
(
bottleneck_dimension
,
False
),
context_rcnn_lib
.
VALUE_NAME
:
context_rcnn_lib
.
ContextProjection
(
bottleneck_dimension
,
False
),
context_rcnn_lib
.
QUERY_NAME
:
context_rcnn_lib
.
ContextProjection
(
bottleneck_dimension
,
False
)}
attention_features
=
context_rcnn_lib
.
compute_box_context_attention
(
attention_features
=
context_rcnn_lib
.
compute_box_context_attention
(
box_features
,
context_features
,
valid_context_size
,
box_features
,
context_features
,
valid_context_size
,
bottleneck_dimension
,
attention_temperature
,
is_training
,
bottleneck_dimension
,
attention_temperature
,
is_training
,
False
,
projection_layers
)
False
,
context_rcnn_lib
.
AttentionBlock
(
bottleneck_dimension
,
attention_temperature
,
False
)
)
# Makes sure the shape is correct.
# Makes sure the shape is correct.
self
.
assertAllEqual
(
attention_features
.
shape
,
[
2
,
3
,
1
,
1
,
4
])
self
.
assertAllEqual
(
attention_features
.
shape
,
[
2
,
3
,
1
,
1
,
4
])
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment