"vscode:/vscode.git/clone" did not exist on "c5f6c538fd71cc8b6653d5184f25784095d9fff9"
Commit 34a93745 authored by Itai Zukerman's avatar Itai Zukerman Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 430974747
parent 2016a27a
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for semantic segmentation task."""
# pylint: disable=unused-import
from absl.testing import parameterized
import orbit
import tensorflow as tf
from official.core import exp_factory
from official.modeling import optimization
from official.projects.qat.vision.tasks import semantic_segmentation
from official.vision import beta
from official.vision.beta.configs import semantic_segmentation as exp_cfg
class SemanticSegmentationTaskTest(parameterized.TestCase, tf.test.TestCase):
@parameterized.parameters(
('mnv2_deeplabv3_pascal_qat', True),
('mnv2_deeplabv3_pascal_qat', False),
)
def test_semantic_segmentation_task(self, test_config, is_training):
"""Semantic segmentation task test for training and val using toy configs."""
config = exp_factory.get_exp_config(test_config)
# modify config to suit local testing
config.task.model.input_size = [512, 512, 3]
config.trainer.steps_per_loop = 1
config.task.train_data.global_batch_size = 1
config.task.validation_data.global_batch_size = 1
config.task.train_data.shuffle_buffer_size = 2
config.task.validation_data.shuffle_buffer_size = 2
config.train_steps = 1
config.task.model.decoder.aspp.output_tensor = True
task = semantic_segmentation.SemanticSegmentationTask(config.task)
model = task.build_model()
metrics = task.build_metrics(training=is_training)
strategy = tf.distribute.get_strategy()
data_config = config.task.train_data if is_training else config.task.validation_data
dataset = orbit.utils.make_distributed_dataset(strategy, task.build_inputs,
data_config)
iterator = iter(dataset)
opt_factory = optimization.OptimizerFactory(config.trainer.optimizer_config)
optimizer = opt_factory.build_optimizer(opt_factory.build_learning_rate())
if is_training:
task.train_step(next(iterator), model, optimizer, metrics=metrics)
else:
task.validation_step(next(iterator), model, metrics=metrics)
if __name__ == '__main__':
tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment