Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
3475ebda
Commit
3475ebda
authored
Jun 30, 2020
by
Kaushik Shivakumar
Browse files
progress on integrating bettter
parent
f8df8742
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
144 additions
and
165 deletions
+144
-165
research/object_detection/meta_architectures/context_rcnn_lib.py
...h/object_detection/meta_architectures/context_rcnn_lib.py
+142
-158
research/object_detection/meta_architectures/context_rcnn_meta_arch.py
...ct_detection/meta_architectures/context_rcnn_meta_arch.py
+2
-7
research/object_detection/meta_architectures/detr_meta_arch.py
...rch/object_detection/meta_architectures/detr_meta_arch.py
+0
-0
No files found.
research/object_detection/meta_architectures/context_rcnn_lib.py
View file @
3475ebda
...
...
@@ -49,162 +49,153 @@ class ContextProjection(tf.keras.layers.Layer):
def
call
(
self
,
input_features
,
is_training
=
False
):
return
self
.
projection
(
self
.
batch_norm
(
input_features
,
is_training
))
def
filter_weight_value
(
weights
,
values
,
valid_mask
):
"""Filters weights and values based on valid_mask.
_NEGATIVE_PADDING_VALUE will be added to invalid elements in the weights to
avoid their contribution in softmax. 0 will be set for the invalid elements in
the values.
Args:
weights: A float Tensor of shape [batch_size, input_size, context_size].
values: A float Tensor of shape [batch_size, context_size,
projected_dimension].
valid_mask: A boolean Tensor of shape [batch_size, context_size]. True means
valid and False means invalid.
Returns:
weights: A float Tensor of shape [batch_size, input_size, context_size].
values: A float Tensor of shape [batch_size, context_size,
projected_dimension].
Raises:
ValueError: If shape of doesn't match.
"""
w_batch_size
,
_
,
w_context_size
=
weights
.
shape
v_batch_size
,
v_context_size
,
_
=
values
.
shape
m_batch_size
,
m_context_size
=
valid_mask
.
shape
if
w_batch_size
!=
v_batch_size
or
v_batch_size
!=
m_batch_size
:
raise
ValueError
(
"Please make sure the first dimension of the input"
" tensors are the same."
)
if
w_context_size
!=
v_context_size
:
raise
ValueError
(
"Please make sure the third dimension of weights matches"
" the second dimension of values."
)
if
w_context_size
!=
m_context_size
:
raise
ValueError
(
"Please make sure the third dimension of the weights"
" matches the second dimension of the valid_mask."
)
valid_mask
=
valid_mask
[...,
tf
.
newaxis
]
# Force the invalid weights to be very negative so it won't contribute to
# the softmax.
weights
+=
tf
.
transpose
(
tf
.
cast
(
tf
.
math
.
logical_not
(
valid_mask
),
weights
.
dtype
)
*
_NEGATIVE_PADDING_VALUE
,
perm
=
[
0
,
2
,
1
])
# Force the invalid values to be 0.
values
*=
tf
.
cast
(
valid_mask
,
values
.
dtype
)
return
weights
,
values
class
AttentionBlock
(
tf
.
keras
.
layers
.
Layer
):
def
__init__
(
self
,
bottleneck_dimension
,
attention_temperature
,
freeze_batchnorm
,
**
kwargs
):
self
.
key_proj
=
ContextProjection
(
bottleneck_dimension
,
freeze_batchnorm
)
self
.
val_proj
=
ContextProjection
(
bottleneck_dimension
,
freeze_batchnorm
)
self
.
query_proj
=
ContextProjection
(
bottleneck_dimension
,
freeze_batchnorm
)
self
.
attention_temperature
=
attention_temperature
self
.
freeze_batchnorm
=
freeze_batchnorm
self
.
bottleneck_dimension
=
bottleneck_dimension
super
(
AttentionBlock
,
self
).
__init__
(
**
kwargs
)
def
build
(
self
,
input_shapes
):
self
.
feature_proj
=
ContextProjection
(
input_shapes
[
0
][
-
1
],
self
.
freeze_batchnorm
)
self
.
key_proj
.
build
(
input_shapes
[
0
])
self
.
val_proj
.
build
(
input_shapes
[
0
])
self
.
query_proj
.
build
(
input_shapes
[
0
])
self
.
feature_proj
.
build
(
input_shapes
[
0
])
def
filter_weight_value
(
self
,
weights
,
values
,
valid_mask
):
"""Filters weights and values based on valid_mask.
_NEGATIVE_PADDING_VALUE will be added to invalid elements in the weights to
avoid their contribution in softmax. 0 will be set for the invalid elements in
the values.
Args:
weights: A float Tensor of shape [batch_size, input_size, context_size].
values: A float Tensor of shape [batch_size, context_size,
projected_dimension].
valid_mask: A boolean Tensor of shape [batch_size, context_size]. True means
valid and False means invalid.
Returns:
weights: A float Tensor of shape [batch_size, input_size, context_size].
values: A float Tensor of shape [batch_size, context_size,
projected_dimension].
Raises:
ValueError: If shape of doesn't match.
"""
w_batch_size
,
_
,
w_context_size
=
weights
.
shape
v_batch_size
,
v_context_size
,
_
=
values
.
shape
m_batch_size
,
m_context_size
=
valid_mask
.
shape
if
w_batch_size
!=
v_batch_size
or
v_batch_size
!=
m_batch_size
:
raise
ValueError
(
"Please make sure the first dimension of the input"
" tensors are the same."
)
if
w_context_size
!=
v_context_size
:
raise
ValueError
(
"Please make sure the third dimension of weights matches"
" the second dimension of values."
)
if
w_context_size
!=
m_context_size
:
raise
ValueError
(
"Please make sure the third dimension of the weights"
" matches the second dimension of the valid_mask."
)
valid_mask
=
valid_mask
[...,
tf
.
newaxis
]
# Force the invalid weights to be very negative so it won't contribute to
# the softmax.
weights
+=
tf
.
transpose
(
tf
.
cast
(
tf
.
math
.
logical_not
(
valid_mask
),
weights
.
dtype
)
*
_NEGATIVE_PADDING_VALUE
,
perm
=
[
0
,
2
,
1
])
# Force the invalid values to be 0.
values
*=
tf
.
cast
(
valid_mask
,
values
.
dtype
)
return
weights
,
values
def
run_projection
(
self
,
features
,
bottleneck_dimension
,
is_training
,
layer
,
normalize
=
True
):
"""Projects features to another feature space.
Args:
features: A float Tensor of shape [batch_size, features_size,
num_features].
projection_dimension: A int32 Tensor.
is_training: A boolean Tensor (affecting batch normalization).
node: Contains a custom layer specific to the particular operation
being performed (key, value, query, features)
normalize: A boolean Tensor. If true, the output features will be l2
normalized on the last dimension.
Returns:
A float Tensor of shape [batch, features_size, projection_dimension].
"""
shape_arr
=
features
.
shape
batch_size
,
_
,
num_features
=
shape_arr
print
(
"Orig"
,
features
.
shape
)
features
=
tf
.
reshape
(
features
,
[
-
1
,
num_features
])
projected_features
=
layer
(
features
,
is_training
)
projected_features
=
tf
.
reshape
((
batch_size
,
-
1
,
bottleneck_dimension
))(
projected_features
)
print
(
projected_features
.
shape
)
if
normalize
:
projected_features
=
tf
.
keras
.
backend
.
l2_normalize
(
projected_features
,
axis
=-
1
)
return
projected_features
def
call
(
self
,
input_features
,
is_training
,
valid_mask
):
input_features
,
context_features
=
input_features
with
tf
.
variable_scope
(
"AttentionBlock"
):
queries
=
self
.
run_projection
(
input_features
,
self
.
bottleneck_dimension
,
is_training
,
self
.
query_proj
,
normalize
=
True
)
keys
=
self
.
run_projection
(
context_features
,
self
.
bottleneck_dimension
,
is_training
,
self
.
key_proj
,
normalize
=
True
)
values
=
self
.
run_projection
(
context_features
,
self
.
bottleneck_dimension
,
is_training
,
self
.
val_proj
,
normalize
=
True
)
weights
=
tf
.
matmul
(
queries
,
keys
,
transpose_b
=
True
)
weights
,
values
=
self
.
filter_weight_value
(
weights
,
values
,
valid_mask
)
weights
=
tf
.
nn
.
softmax
(
weights
/
self
.
attention_temperature
)
features
=
tf
.
matmul
(
weights
,
values
)
output_features
=
self
.
run_projection
(
features
,
input_features
.
shape
[
-
1
],
is_training
,
self
.
feature_proj
,
normalize
=
False
)
return
output_features
def
compute_valid_mask
(
num_valid_elements
,
num_elements
):
"""Computes mask of valid entries within padded context feature.
Args:
num_valid_elements: A int32 Tensor of shape [batch_size].
num_elements: An int32 Tensor.
Returns:
A boolean Tensor of the shape [batch_size, num_elements]. True means
valid and False means invalid.
"""
batch_size
=
num_valid_elements
.
shape
[
0
]
element_idxs
=
tf
.
range
(
num_elements
,
dtype
=
tf
.
int32
)
batch_element_idxs
=
tf
.
tile
(
element_idxs
[
tf
.
newaxis
,
...],
[
batch_size
,
1
])
num_valid_elements
=
num_valid_elements
[...,
tf
.
newaxis
]
valid_mask
=
tf
.
less
(
batch_element_idxs
,
num_valid_elements
)
return
valid_mask
def
project_features
(
features
,
projection_dimension
,
is_training
,
node
,
normalize
=
True
):
"""Projects features to another feature space.
Args:
features: A float Tensor of shape [batch_size, features_size,
num_features].
projection_dimension: A int32 Tensor.
is_training: A boolean Tensor (affecting batch normalization).
node: Contains a custom layer specific to the particular operation
being performed (key, value, query, features)
normalize: A boolean Tensor. If true, the output features will be l2
normalized on the last dimension.
Returns:
A float Tensor of shape [batch, features_size, projection_dimension].
"""
shape_arr
=
features
.
shape
batch_size
,
_
,
num_features
=
shape_arr
features
=
tf
.
reshape
(
features
,
[
-
1
,
num_features
])
projected_features
=
node
(
features
,
is_training
)
projected_features
=
tf
.
reshape
(
projected_features
,
[
batch_size
,
-
1
,
projection_dimension
])
if
normalize
:
projected_features
=
tf
.
math
.
l2_normalize
(
projected_features
,
axis
=-
1
)
return
projected_features
def
attention_block
(
input_features
,
context_features
,
bottleneck_dimension
,
output_dimension
,
attention_temperature
,
valid_mask
,
is_training
,
attention_projections
):
"""Generic attention block.
Args:
input_features: A float Tensor of shape [batch_size, input_size,
num_input_features].
context_features: A float Tensor of shape [batch_size, context_size,
num_context_features].
bottleneck_dimension: A int32 Tensor representing the bottleneck dimension
for intermediate projections.
output_dimension: A int32 Tensor representing the last dimension of the
output feature.
attention_temperature: A float Tensor. It controls the temperature of the
softmax for weights calculation. The formula for calculation as follows:
weights = exp(weights / temperature) / sum(exp(weights / temperature))
valid_mask: A boolean Tensor of shape [batch_size, context_size].
is_training: A boolean Tensor (affecting batch normalization).
attention_projections: Contains a dictionary of the projection objects.
Returns:
A float Tensor of shape [batch_size, input_size, output_dimension].
"""
with
tf
.
variable_scope
(
"AttentionBlock"
):
queries
=
project_features
(
input_features
,
bottleneck_dimension
,
is_training
,
attention_projections
[
QUERY_NAME
],
normalize
=
True
)
keys
=
project_features
(
context_features
,
bottleneck_dimension
,
is_training
,
attention_projections
[
KEY_NAME
],
normalize
=
True
)
values
=
project_features
(
context_features
,
bottleneck_dimension
,
is_training
,
attention_projections
[
VALUE_NAME
],
normalize
=
True
)
weights
=
tf
.
matmul
(
queries
,
keys
,
transpose_b
=
True
)
weights
,
values
=
filter_weight_value
(
weights
,
values
,
valid_mask
)
weights
=
tf
.
nn
.
softmax
(
weights
/
attention_temperature
)
features
=
tf
.
matmul
(
weights
,
values
)
output_features
=
project_features
(
features
,
output_dimension
,
is_training
,
attention_projections
[
FEATURE_NAME
],
normalize
=
False
)
return
output_features
"""Computes mask of valid entries within padded context feature.
Args:
num_valid_elements: A int32 Tensor of shape [batch_size].
num_elements: An int32 Tensor.
Returns:
A boolean Tensor of the shape [batch_size, num_elements]. True means
valid and False means invalid.
"""
batch_size
=
num_valid_elements
.
shape
[
0
]
element_idxs
=
tf
.
range
(
num_elements
,
dtype
=
tf
.
int32
)
batch_element_idxs
=
tf
.
tile
(
element_idxs
[
tf
.
newaxis
,
...],
[
batch_size
,
1
])
num_valid_elements
=
num_valid_elements
[...,
tf
.
newaxis
]
valid_mask
=
tf
.
less
(
batch_element_idxs
,
num_valid_elements
)
return
valid_mask
def
compute_box_context_attention
(
box_features
,
context_features
,
valid_context_size
,
bottleneck_dimension
,
attention_temperature
,
is_training
,
freeze_batchnorm
,
attention_
projections
):
freeze_batchnorm
,
attention_
block
):
"""Computes the attention feature from the context given a batch of box.
Args:
...
...
@@ -230,19 +221,12 @@ def compute_box_context_attention(box_features, context_features,
valid_mask
=
compute_valid_mask
(
valid_context_size
,
context_size
)
channels
=
box_features
.
shape
[
-
1
]
if
'feature'
not
in
attention_projections
:
attention_projections
[
FEATURE_NAME
]
=
ContextProjection
(
channels
,
freeze_batchnorm
)
# Average pools over height and width dimension so that the shape of
# box_features becomes [batch_size, max_num_proposals, channels].
box_features
=
tf
.
reduce_mean
(
box_features
,
[
2
,
3
])
output_features
=
attention_block
(
box_features
,
context_features
,
bottleneck_dimension
,
channels
,
attention_temperature
,
valid_mask
,
is_training
,
attention_projections
)
output_features
=
attention_block
([
box_features
,
context_features
],
is_training
,
valid_mask
)
# Expands the dimension back to match with the original feature map.
output_features
=
output_features
[:,
:,
tf
.
newaxis
,
tf
.
newaxis
,
:]
...
...
research/object_detection/meta_architectures/context_rcnn_meta_arch.py
View file @
3475ebda
...
...
@@ -272,12 +272,7 @@ class ContextRCNNMetaArch(faster_rcnn_meta_arch.FasterRCNNMetaArch):
is_training
=
is_training
,
freeze_batchnorm
=
freeze_batchnorm
)
self
.
_atten_projs
=
{
'key'
:
context_rcnn_lib
.
ContextProjection
(
attention_bottleneck_dimension
,
freeze_batchnorm
),
'val'
:
context_rcnn_lib
.
ContextProjection
(
attention_bottleneck_dimension
,
freeze_batchnorm
),
'query'
:
context_rcnn_lib
.
ContextProjection
(
attention_bottleneck_dimension
,
freeze_batchnorm
)}
self
.
_attention_block
=
context_rcnn_lib
.
AttentionBlock
(
attention_bottleneck_dimension
,
attention_temperature
,
freeze_batchnorm
)
@
staticmethod
def
get_side_inputs
(
features
):
...
...
@@ -340,7 +335,7 @@ class ContextRCNNMetaArch(faster_rcnn_meta_arch.FasterRCNNMetaArch):
box_features
=
box_features
,
context_features
=
context_features
,
valid_context_size
=
valid_context_size
,
attention_
projections
=
self
.
_atten
_projs
)
attention_
block
=
self
.
_atten
tion_block
)
# Adds box features with attention features.
box_features
+=
attention_features
...
...
research/object_detection/meta_architectures/detr_meta_arch.py
0 → 100644
View file @
3475ebda
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment