Commit 32dcc1e4 authored by Yin Cui's avatar Yin Cui Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 353697955
parent 056d83d2
# 3D ResNet-50 video classification on Kinetics-400. 75.3% top-1 and 91.2% top-5 accuracy. # 3D ResNet-50 video classification on Kinetics-400.
# #
# --experiment_type=video_classification_kinetics400 # --experiment_type=video_classification_kinetics400
# Expected accuracy on TPU 8x8: 75.1% # Expected accuracy: 77.0% top-1, 93.0% top-5.
# Updated: 2020-12-16
runtime: runtime:
distribution_strategy: 'tpu' distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16' mixed_precision_dtype: 'bfloat16'
...@@ -15,45 +14,59 @@ task: ...@@ -15,45 +14,59 @@ task:
resnet_3d: resnet_3d:
block_specs: !!python/tuple block_specs: !!python/tuple
- temporal_kernel_sizes: !!python/tuple - temporal_kernel_sizes: !!python/tuple
- 3 - 1
- 3 - 1
- 3 - 1
temporal_strides: 1 temporal_strides: 1
use_self_gating: true use_self_gating: false
- temporal_kernel_sizes: !!python/tuple - temporal_kernel_sizes: !!python/tuple
- 3
- 1 - 1
- 3 - 1
- 1
- 1 - 1
temporal_strides: 1 temporal_strides: 1
use_self_gating: true use_self_gating: false
- temporal_kernel_sizes: !!python/tuple - temporal_kernel_sizes: !!python/tuple
- 3 - 3
- 1
- 3 - 3
- 1
- 3 - 3
- 1 - 3
- 3
- 3
temporal_strides: 1 temporal_strides: 1
use_self_gating: true use_self_gating: false
- temporal_kernel_sizes: !!python/tuple - temporal_kernel_sizes: !!python/tuple
- 1
- 3 - 3
- 1 - 3
- 3
temporal_strides: 1 temporal_strides: 1
use_self_gating: true use_self_gating: false
model_id: 50 model_id: 50
stem_conv_temporal_kernel_size: 5 stem_conv_temporal_kernel_size: 5
stem_conv_temporal_stride: 2 stem_conv_temporal_stride: 2
stem_pool_temporal_stride: 2 stem_pool_temporal_stride: 1
train_data: train_data:
name: kinetics400 name: kinetics400
feature_shape: !!python/tuple
- 32
- 224
- 224
- 3
temporal_stride: 2
global_batch_size: 1024 global_batch_size: 1024
dtype: 'bfloat16' dtype: 'bfloat16'
shuffle_buffer_size: 1024 shuffle_buffer_size: 1024
validation_data: validation_data:
name: kinetics400 name: kinetics400
global_batch_size: 32 feature_shape: !!python/tuple
- 32
- 256
- 256
- 3
temporal_stride: 2
num_test_clips: 10
num_test_crops: 3
global_batch_size: 64
dtype: 'bfloat16' dtype: 'bfloat16'
drop_remainder: false drop_remainder: false
trainer: trainer:
...@@ -61,11 +74,11 @@ trainer: ...@@ -61,11 +74,11 @@ trainer:
learning_rate: learning_rate:
cosine: cosine:
initial_learning_rate: 0.8 initial_learning_rate: 0.8
decay_steps: 42000 decay_steps: 42104
warmup: warmup:
linear: linear:
warmup_steps: 1050 warmup_steps: 1053
train_steps: 42000 train_steps: 42104
steps_per_loop: 500 steps_per_loop: 500
summary_interval: 500 summary_interval: 500
validation_interval: 500 validation_interval: 500
# SlowOnly 16x4 video classification on Kinetics-400.
#
# --experiment_type=video_classification_kinetics400
# Expected accuracy: 75.6% top-1, 92.1% top-5.
runtime:
distribution_strategy: 'tpu'
mixed_precision_dtype: 'bfloat16'
task:
model:
dropout_rate: 0.5
norm_activation:
use_sync_bn: false
backbone:
resnet_3d:
block_specs: !!python/tuple
- temporal_kernel_sizes: !!python/tuple
- 1
- 1
- 1
temporal_strides: 1
use_self_gating: false
- temporal_kernel_sizes: !!python/tuple
- 1
- 1
- 1
- 1
temporal_strides: 1
use_self_gating: false
- temporal_kernel_sizes: !!python/tuple
- 3
- 3
- 3
- 3
- 3
- 3
temporal_strides: 1
use_self_gating: false
- temporal_kernel_sizes: !!python/tuple
- 3
- 3
- 3
temporal_strides: 1
use_self_gating: false
model_id: 50
stem_conv_temporal_kernel_size: 1
stem_conv_temporal_stride: 1
stem_pool_temporal_stride: 1
train_data:
name: kinetics400
feature_shape: !!python/tuple
- 16
- 224
- 224
- 3
temporal_stride: 4
global_batch_size: 1024
dtype: 'bfloat16'
shuffle_buffer_size: 1024
validation_data:
name: kinetics400
feature_shape: !!python/tuple
- 16
- 256
- 256
- 3
temporal_stride: 4
num_test_clips: 10
num_test_crops: 3
global_batch_size: 64
dtype: 'bfloat16'
drop_remainder: false
trainer:
optimizer_config:
learning_rate:
cosine:
initial_learning_rate: 0.8
decay_steps: 42104
warmup:
linear:
warmup_steps: 1053
train_steps: 42104
steps_per_loop: 500
summary_interval: 500
validation_interval: 500
# SlowOnly video classification on Kinetics-400. Expected performance to be updated. # SlowOnly 8x8 video classification on Kinetics-400.
# #
# --experiment_type=video_classification_kinetics400 # --experiment_type=video_classification_kinetics400
# Expected accuracy: 74.1% top-1, 91.4% top-5. # Expected accuracy: 74.1% top-1, 91.4% top-5.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment