Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
32dcc1e4
Commit
32dcc1e4
authored
Jan 25, 2021
by
Yin Cui
Committed by
A. Unique TensorFlower
Jan 25, 2021
Browse files
Internal change
PiperOrigin-RevId: 353697955
parent
056d83d2
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
120 additions
and
23 deletions
+120
-23
official/vision/beta/configs/experiments/video_classification/k400_3d-resnet50_tpu.yaml
...xperiments/video_classification/k400_3d-resnet50_tpu.yaml
+35
-22
official/vision/beta/configs/experiments/video_classification/k400_slowonly16x4_tpu.yaml
...periments/video_classification/k400_slowonly16x4_tpu.yaml
+84
-0
official/vision/beta/configs/experiments/video_classification/k400_slowonly8x8_tpu.yaml
...xperiments/video_classification/k400_slowonly8x8_tpu.yaml
+1
-1
No files found.
official/vision/beta/configs/experiments/video_classification/k400_3d-resnet50_tpu.yaml
View file @
32dcc1e4
# 3D ResNet-50 video classification on Kinetics-400.
75.3% top-1 and 91.2% top-5 accuracy.
# 3D ResNet-50 video classification on Kinetics-400.
#
#
# --experiment_type=video_classification_kinetics400
# --experiment_type=video_classification_kinetics400
# Expected accuracy on TPU 8x8: 75.1%
# Expected accuracy: 77.0% top-1, 93.0% top-5.
# Updated: 2020-12-16
runtime
:
runtime
:
distribution_strategy
:
'
tpu'
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
mixed_precision_dtype
:
'
bfloat16'
...
@@ -15,45 +14,59 @@ task:
...
@@ -15,45 +14,59 @@ task:
resnet_3d
:
resnet_3d
:
block_specs
:
!!python/tuple
block_specs
:
!!python/tuple
-
temporal_kernel_sizes
:
!!python/tuple
-
temporal_kernel_sizes
:
!!python/tuple
-
3
-
1
-
3
-
1
-
3
-
1
temporal_strides
:
1
temporal_strides
:
1
use_self_gating
:
tru
e
use_self_gating
:
fals
e
-
temporal_kernel_sizes
:
!!python/tuple
-
temporal_kernel_sizes
:
!!python/tuple
-
3
-
1
-
1
-
3
-
1
-
1
-
1
-
1
temporal_strides
:
1
temporal_strides
:
1
use_self_gating
:
tru
e
use_self_gating
:
fals
e
-
temporal_kernel_sizes
:
!!python/tuple
-
temporal_kernel_sizes
:
!!python/tuple
-
3
-
3
-
1
-
3
-
3
-
1
-
3
-
3
-
1
-
3
-
3
-
3
temporal_strides
:
1
temporal_strides
:
1
use_self_gating
:
tru
e
use_self_gating
:
fals
e
-
temporal_kernel_sizes
:
!!python/tuple
-
temporal_kernel_sizes
:
!!python/tuple
-
1
-
3
-
3
-
1
-
3
-
3
temporal_strides
:
1
temporal_strides
:
1
use_self_gating
:
tru
e
use_self_gating
:
fals
e
model_id
:
50
model_id
:
50
stem_conv_temporal_kernel_size
:
5
stem_conv_temporal_kernel_size
:
5
stem_conv_temporal_stride
:
2
stem_conv_temporal_stride
:
2
stem_pool_temporal_stride
:
2
stem_pool_temporal_stride
:
1
train_data
:
train_data
:
name
:
kinetics400
name
:
kinetics400
feature_shape
:
!!python/tuple
-
32
-
224
-
224
-
3
temporal_stride
:
2
global_batch_size
:
1024
global_batch_size
:
1024
dtype
:
'
bfloat16'
dtype
:
'
bfloat16'
shuffle_buffer_size
:
1024
shuffle_buffer_size
:
1024
validation_data
:
validation_data
:
name
:
kinetics400
name
:
kinetics400
global_batch_size
:
32
feature_shape
:
!!python/tuple
-
32
-
256
-
256
-
3
temporal_stride
:
2
num_test_clips
:
10
num_test_crops
:
3
global_batch_size
:
64
dtype
:
'
bfloat16'
dtype
:
'
bfloat16'
drop_remainder
:
false
drop_remainder
:
false
trainer
:
trainer
:
...
@@ -61,11 +74,11 @@ trainer:
...
@@ -61,11 +74,11 @@ trainer:
learning_rate
:
learning_rate
:
cosine
:
cosine
:
initial_learning_rate
:
0.8
initial_learning_rate
:
0.8
decay_steps
:
42
000
decay_steps
:
42
104
warmup
:
warmup
:
linear
:
linear
:
warmup_steps
:
105
0
warmup_steps
:
105
3
train_steps
:
42
000
train_steps
:
42
104
steps_per_loop
:
500
steps_per_loop
:
500
summary_interval
:
500
summary_interval
:
500
validation_interval
:
500
validation_interval
:
500
official/vision/beta/configs/experiments/video_classification/k400_slowonly16x4_tpu.yaml
0 → 100644
View file @
32dcc1e4
# SlowOnly 16x4 video classification on Kinetics-400.
#
# --experiment_type=video_classification_kinetics400
# Expected accuracy: 75.6% top-1, 92.1% top-5.
runtime
:
distribution_strategy
:
'
tpu'
mixed_precision_dtype
:
'
bfloat16'
task
:
model
:
dropout_rate
:
0.5
norm_activation
:
use_sync_bn
:
false
backbone
:
resnet_3d
:
block_specs
:
!!python/tuple
-
temporal_kernel_sizes
:
!!python/tuple
-
1
-
1
-
1
temporal_strides
:
1
use_self_gating
:
false
-
temporal_kernel_sizes
:
!!python/tuple
-
1
-
1
-
1
-
1
temporal_strides
:
1
use_self_gating
:
false
-
temporal_kernel_sizes
:
!!python/tuple
-
3
-
3
-
3
-
3
-
3
-
3
temporal_strides
:
1
use_self_gating
:
false
-
temporal_kernel_sizes
:
!!python/tuple
-
3
-
3
-
3
temporal_strides
:
1
use_self_gating
:
false
model_id
:
50
stem_conv_temporal_kernel_size
:
1
stem_conv_temporal_stride
:
1
stem_pool_temporal_stride
:
1
train_data
:
name
:
kinetics400
feature_shape
:
!!python/tuple
-
16
-
224
-
224
-
3
temporal_stride
:
4
global_batch_size
:
1024
dtype
:
'
bfloat16'
shuffle_buffer_size
:
1024
validation_data
:
name
:
kinetics400
feature_shape
:
!!python/tuple
-
16
-
256
-
256
-
3
temporal_stride
:
4
num_test_clips
:
10
num_test_crops
:
3
global_batch_size
:
64
dtype
:
'
bfloat16'
drop_remainder
:
false
trainer
:
optimizer_config
:
learning_rate
:
cosine
:
initial_learning_rate
:
0.8
decay_steps
:
42104
warmup
:
linear
:
warmup_steps
:
1053
train_steps
:
42104
steps_per_loop
:
500
summary_interval
:
500
validation_interval
:
500
official/vision/beta/configs/experiments/video_classification/k400_slowonly8x8_tpu.yaml
View file @
32dcc1e4
# SlowOnly video classification on Kinetics-400.
Expected performance to be updated.
# SlowOnly
8x8
video classification on Kinetics-400.
#
#
# --experiment_type=video_classification_kinetics400
# --experiment_type=video_classification_kinetics400
# Expected accuracy: 74.1% top-1, 91.4% top-5.
# Expected accuracy: 74.1% top-1, 91.4% top-5.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment