Commit 2f2a04c7 authored by Toby Boyd's avatar Toby Boyd
Browse files

Modify to work with perfzero framework.

parent 52ee9636
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import print_function
import os
import sys
from absl import app as absl_app
from absl import flags
from absl.testing import flagsaver
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.resnet import cifar10_main as cifar_main
......@@ -15,99 +13,80 @@ import official.resnet.keras.keras_cifar_main as keras_cifar_main
DATA_DIR = '/data/cifar10_data/'
class KerasCifar10BenchmarkTests():
class KerasCifar10BenchmarkTests(object):
"""Benchmarks and accuracy tests for KerasCifar10."""
local_flags = None
def __init__(self, output_dir=None):
self.oss_report_object = None
self.output_dir = output_dir
def keras_resnet56_1_gpu(self):
"""Test keras based model with Keras fit and distribution strategies."""
self._setup()
flags.FLAGS.num_gpus = 1
flags.FLAGS.data_dir = DATA_DIR
flags.FLAGS.batch_size = 128
flags.FLAGS.train_epochs = 1
flags.FLAGS.train_epochs = 182
flags.FLAGS.model_dir = self._get_model_dir('keras_resnet56_1_gpu')
flags.FLAGS.resnet_size = 56
flags.FLAGS.dtype = 'fp32'
stats = keras_cifar_main.run_cifar_with_keras(flags.FLAGS)
report_info = {}
results = []
results.append(self._create_result(stats['accuracy_top_1'].item(),
'top_1',
'quality'))
results.append(self._create_result(stats['training_accuracy_top_1'].item(),
'top_1_train_accuracy',
'quality'))
report_info['results'] = results
return report_info
self._fill_report_object(stats)
def keras_resnet56_4_gpu(self):
"""Test keras based model with Keras fit and distribution strategies."""
self._setup()
flags.FLAGS.num_gpus = 4
flags.FLAGS.data_dir = DATA_DIR
flags.FLAGS.data_dir = self._get_model_dir('keras_resnet56_4_gpu')
flags.FLAGS.batch_size = 128
flags.FLAGS.train_epochs = 182
flags.FLAGS.model_dir = ''
flags.FLAGS.resnet_size = 56
flags.FLAGS.dtype = 'fp32'
keras_cifar_main.run_cifar_with_keras(flags.FLAGS)
stats = keras_cifar_main.run_cifar_with_keras(flags.FLAGS)
self._fill_report_object(stats)
def keras_resnet56_no_dist_strat_1_gpu(self):
"""Test keras based model with Keras fit but not distribution strategies."""
self._setup()
flags.dist_strat_off = True
flags.FLAGS.dist_strat_off = True
flags.FLAGS.num_gpus = 1
flags.FLAGS.data_dir = DATA_DIR
flags.FLAGS.batch_size = 128
flags.FLAGS.train_epochs = 1
flags.FLAGS.model_dir = ''
flags.FLAGS.train_epochs = 182
flags.FLAGS.model_dir = self._get_model_dir(
'keras_resnet56_no_dist_strat_1_gpu')
flags.FLAGS.resnet_size = 56
flags.FLAGS.dtype = 'fp32'
stats = keras_cifar_main.run_cifar_with_keras(flags.FLAGS)
report_info = {}
results = []
results.append(self._create_result(stats['accuracy_top_1'].item(),
'top_1',
'quality'))
results.append(self._create_result(stats['training_accuracy_top_1'].item(),
'top_1_train_accuracy',
'quality'))
report_info['results'] = results
return report_info
def _create_result(self, result, result_name, result_unit):
res_dict = {}
res_dict['result'] = result
res_dict['result_name'] = result_name
res_dict['result_unit'] = result_unit
return res_dict
self._fill_report_object(stats)
def _fill_report_object(self, stats):
if self.oss_report_object:
self.oss_report_object.top_1 = stats['accuracy_top_1'].item()
self.oss_report_object.add_other_quality(stats['training_accuracy_top_1']
.item(),
'top_1_train_accuracy')
else:
raise ValueError('oss_report_object has not been set.')
def _get_model_dir(self, folder_name):
return os.path.join('/workspace', folder_name)
return os.path.join(self.output_dir, folder_name)
def _setup(self):
tf.logging.set_verbosity(tf.logging.DEBUG)
keras_cifar_main.define_keras_cifar_flags()
cifar_main.define_cifar_flags()
flags.FLAGS(['foo'])
def run_tests(self, test_list):
keras_benchmark = KerasCifar10BenchmarkTests()
if test_list:
for t in test_list:
getattr(self, t)()
else:
print('Running all tests')
keras_benchmark.keras_resnet56_1_gpu()
keras_benchmark.keras_resnet56_no_dist_strat_1_gpu()
keras_benchmark.keras_resnet56_4_gpu()
def main(_):
keras_benchmark = KerasCifar10BenchmarkTests()
keras_benchmark.run_tests(['keras_resnet56_1_gpu'])
if KerasCifar10BenchmarkTests.local_flags is None:
print('Build Flags!!!!')
keras_cifar_main.define_keras_cifar_flags()
cifar_main.define_cifar_flags()
# Loads flags to get defaults to then override.
flags.FLAGS(['foo'])
saved_flag_values = flagsaver.save_flag_values()
KerasCifar10BenchmarkTests.local_flags = saved_flag_values
return
print('Restore Flags')
flagsaver.restore_flag_values(KerasCifar10BenchmarkTests.local_flags)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.DEBUG)
cifar_main.define_cifar_flags()
absl_app.run(main)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment