"git@developer.sourcefind.cn:OpenDAS/torch-scatter.git" did not exist on "1af5d781a649fa5c0a1391402ad7146e8c779f5b"
Commit 2e41d8ca authored by Allen Wang's avatar Allen Wang Committed by A. Unique TensorFlower
Browse files

Move `MultiHeadRelativeAttention` to relative_attention.py.

PiperOrigin-RevId: 331652519
parent 1c5dba9e
...@@ -16,31 +16,11 @@ ...@@ -16,31 +16,11 @@
"""Keras-based attention layer.""" """Keras-based attention layer."""
# pylint: disable=g-classes-have-attributes # pylint: disable=g-classes-have-attributes
import math import math
import string
import tensorflow as tf import tensorflow as tf
EinsumDense = tf.keras.layers.experimental.EinsumDense EinsumDense = tf.keras.layers.experimental.EinsumDense
MultiHeadAttention = tf.keras.layers.MultiHeadAttention MultiHeadAttention = tf.keras.layers.MultiHeadAttention
_CHR_IDX = string.ascii_lowercase
def _large_compatible_negative(tensor_type):
"""Large negative number as Tensor.
This function is necessary because the standard value for epsilon
in this module (-1e9) cannot be represented using tf.float16
Args:
tensor_type: a dtype to determine the type.
Returns:
a large negative number.
"""
if tensor_type == tf.float16:
return tf.float16.min
return -1e9
@tf.keras.utils.register_keras_serializable(package="Text") @tf.keras.utils.register_keras_serializable(package="Text")
...@@ -126,304 +106,3 @@ class CachedAttention(tf.keras.layers.MultiHeadAttention): ...@@ -126,304 +106,3 @@ class CachedAttention(tf.keras.layers.MultiHeadAttention):
if return_attention_scores: if return_attention_scores:
return attention_output, attention_scores, cache return attention_output, attention_scores, cache
return attention_output, cache return attention_output, cache
def _rel_shift(x, klen=-1):
"""Performs relative shift to form the relative attention score."""
x = tf.transpose(x, perm=[2, 3, 0, 1])
x_size = tf.shape(x)
x = tf.reshape(x, [x_size[1], x_size[0], x_size[2], x_size[3]])
x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1])
x = tf.reshape(x, [x_size[0], x_size[1] - 1, x_size[2], x_size[3]])
x = tf.slice(x, [0, 0, 0, 0], [-1, klen, -1, -1])
x = tf.transpose(x, perm=[2, 3, 0, 1])
return x
def _build_proj_equation(free_dims, bound_dims, output_dims):
"""Builds an einsum equation for projections inside multi-head attention."""
input_str = ""
kernel_str = ""
output_str = ""
bias_axes = ""
letter_offset = 0
for i in range(free_dims):
char = _CHR_IDX[i + letter_offset]
input_str += char
output_str += char
letter_offset += free_dims
for i in range(bound_dims):
char = _CHR_IDX[i + letter_offset]
input_str += char
kernel_str += char
letter_offset += bound_dims
for i in range(output_dims):
char = _CHR_IDX[i + letter_offset]
kernel_str += char
output_str += char
bias_axes += char
equation = "%s,%s->%s" % (input_str, kernel_str, output_str)
return equation, bias_axes, len(output_str)
def _get_output_shape(output_rank, known_last_dims):
return [None] * (output_rank - len(known_last_dims)) + list(known_last_dims)
@tf.keras.utils.register_keras_serializable(package="Text")
class MultiHeadRelativeAttention(MultiHeadAttention):
"""A multi-head attention layer with relative attention + position encoding.
This layer shares the same input/output projections as the common
MultiHeadAttention layer.
When it calculates attention logits, position encoding is projected to form
relative keys. The logits are composed by shifted relative logits and content
logits.
**Note: This layer is currently experimental.
Arguments:
num_heads: The number of attention heads.
key_dim: Size of each attention head for query and key.
value_dim: Size of attention head for value.
dropout: Dropout probability for attention.
use_bias: Boolean, whether the dense layers use bias vectors/matrices.
kernel_initializer: Initializer for dense layer kernels.
bias_initializer: Initializer for dense layer biases.
Call args:
query: Query `Tensor` of shape `[B, T, dim]`.
value: Value `Tensor` of shape `[B, S, dim]`.
content_attention_bias: Bias `Tensor` for content based attention of shape
`[num_heads, dim]`.
position_attention_bias: Bias `Tensor` for position based attention of shape
`[num_heads, dim]`.
relative_position_encoding: Relative positional encoding `Tensor` of shape
`[B, L, dim]`.
state: Optional `Tensor` of shape [B, M, E] where M is the length of the
state or memory.
If passed, this is also attended over as in Transformer XL.
key: Optional key `Tensor` of shape `[B, S, dim]`. If not given, will use
`value` for both `key` and `value`, which is the most common case.
attention_mask: a boolean mask of shape `[B, T, S]`, that prevents attention
to certain positions.
"""
def __init__(self,
kernel_initializer="variance_scaling",
**kwargs):
super().__init__(kernel_initializer=kernel_initializer,
**kwargs)
def _build_from_signature(self, query, value, key=None):
super(MultiHeadRelativeAttention, self)._build_from_signature(
query=query,
value=value,
key=key)
if hasattr(value, "shape"):
value_shape = tf.TensorShape(value.shape)
else:
value_shape = value
if key is None:
key_shape = value_shape
elif hasattr(key, "shape"):
key_shape = tf.TensorShape(key.shape)
else:
key_shape = key
common_kwargs = dict(
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activity_regularizer=self._activity_regularizer,
kernel_constraint=self._kernel_constraint,
bias_constraint=self._bias_constraint)
with tf.init_scope():
einsum_equation, _, output_rank = _build_proj_equation(
key_shape.rank - 1, bound_dims=1, output_dims=2)
self._encoding_dense = EinsumDense(
einsum_equation,
output_shape=_get_output_shape(output_rank - 1,
[self._num_heads, self._key_dim]),
bias_axes=None,
name="encoding",
**common_kwargs)
def compute_attention(self,
query,
key,
value,
position,
content_attention_bias,
positional_attention_bias,
segment_matrix=None,
segment_encoding=None,
segment_attention_bias=None,
attention_mask=None):
"""Computes the attention.
This function defines the computation inside `call` with projected
multihead Q, K, V, R inputs.
Args:
query: Projected query `Tensor` of shape `[B, T, N, key_dim]`.
key: Projected key `Tensor` of shape `[B, S + M, N, key_dim]`.
value: Projected value `Tensor` of shape `[B, S + M, N, key_dim]`.
position: Projected position `Tensor` of shape `[B, L, N, key_dim]`.
content_attention_bias: Trainable bias parameter added to the query head
when calculating the content-based attention score.
positional_attention_bias: Trainable bias parameter added to the query
head when calculating the position-based attention score.
segment_matrix: Optional `Tensor` representing segmentation IDs used in
XLNet.
segment_encoding: Optional trainable `Tensor` representing the
segmentation encoding as used in XLNet.
segment_attention_bias: Optional trainable bias parameter added to the
query had when calculating the segment-based attention score used in
XLNet.
attention_mask: (default None) Optional mask that is added to attention
logits. If state is not None, the mask source sequence dimension should
extend M.
Returns:
attention_output: Multi-headed output of attention computation of shape
`[B, S, N, key_dim]`.
"""
content_attention = tf.einsum(self._dot_product_equation,
key,
query + content_attention_bias)
positional_attention = tf.einsum(self._dot_product_equation,
position,
query + positional_attention_bias)
positional_attention = _rel_shift(
positional_attention, klen=tf.shape(content_attention)[3])
if segment_matrix is not None:
segment_attention = tf.einsum("bind,snd->bnis",
query + segment_attention_bias,
segment_encoding)
target_shape = tf.shape(positional_attention)
segment_attention = tf.where(
tf.broadcast_to(tf.expand_dims(segment_matrix, 1), target_shape),
tf.broadcast_to(segment_attention[:, :, :, 1:], target_shape),
tf.broadcast_to(segment_attention[:, :, :, :1], target_shape))
attention_sum = (
content_attention + positional_attention + segment_attention)
else:
attention_sum = content_attention + positional_attention
attention_scores = tf.multiply(
attention_sum, 1.0 / math.sqrt(float(self._key_dim)))
# `attention_scores`: `[B, N, S, S + M]`
if attention_mask is not None:
attention_scores += (_large_compatible_negative(attention_scores.dtype)
* attention_mask)
attention_scores = tf.nn.softmax(attention_scores, 3)
attention_output = self._dropout_layer(attention_scores)
attention_output = tf.einsum(self._combine_equation,
attention_output,
value)
return attention_output
def call(self,
query,
value,
content_attention_bias,
positional_attention_bias,
key=None,
relative_position_encoding=None,
segment_matrix=None,
segment_encoding=None,
segment_attention_bias=None,
state=None,
attention_mask=None):
"""Compute multi-head relative attention over inputs.
Size glossary:
* Number of heads (H): the number of attention heads.
* Value size (V): the size of each value embedding per head.
* Key size (K): the size of each key embedding per head. Equally, the size
of each query embedding per head. Typically K <= V.
* Batch dimensions (B).
* Query (target) attention axes shape (T).
* Value (source) attention axes shape (S), the rank must match the target.
* Encoding length (L): The relative positional encoding length.
Args:
query: attention input.
value: attention input.
content_attention_bias: A trainable bias parameter added to the query
head when calculating the content-based attention score.
positional_attention_bias: A trainable bias parameter added to the query
head when calculating the position-based attention score.
key: attention input.
relative_position_encoding: relative positional encoding for key and
value.
segment_matrix: Optional `Tensor` representing segmentation IDs used in
XLNet.
segment_encoding: Optional `Tensor` representing the segmentation
encoding as used in XLNet.
segment_attention_bias: Optional trainable bias parameter added to the
query had when calculating the segment-based attention score used in
XLNet.
state: (default None) optional state. If passed, this is also attended
over as in TransformerXL.
attention_mask: (default None) Optional mask that is added to attention
logits. If state is not None, the mask source sequence dimension should
extend M.
Returns:
attention_output: The result of the computation, of shape [B, T, E],
where `T` is for target sequence shapes and `E` is the query input last
dimension if `output_shape` is `None`. Otherwise, the multi-head outputs
are projected to the shape specified by `output_shape`.
"""
if not self._built_from_signature:
self._build_from_signature(query, value, key=key)
if key is None:
key = value
if state is not None and state.shape.ndims > 1:
value = tf.concat([state, value], 1)
key = tf.concat([state, key], 1)
# `query` = [B, T, N ,H]
query = self._query_dense(query)
# `key` = [B, S + M, N, H]
key = self._key_dense(key)
# `value` = [B, S + M, N, H]
value = self._value_dense(value)
# `position` = [B, L, N, H]
position = self._encoding_dense(relative_position_encoding)
attention_output = self.compute_attention(
query=query,
key=key,
value=value,
position=position,
content_attention_bias=content_attention_bias,
positional_attention_bias=positional_attention_bias,
segment_matrix=segment_matrix,
segment_encoding=segment_encoding,
segment_attention_bias=segment_attention_bias,
attention_mask=attention_mask)
# `attention_output` = [B, S, N, H]
attention_output = self._output_dense(attention_output)
return attention_output
...@@ -92,38 +92,5 @@ class CachedAttentionTest(keras_parameterized.TestCase): ...@@ -92,38 +92,5 @@ class CachedAttentionTest(keras_parameterized.TestCase):
self.assertEqual(cache["value"].shape, (3, 4, 2, 2)) self.assertEqual(cache["value"].shape, (3, 4, 2, 2))
@keras_parameterized.run_all_keras_modes
class MultiHeadRelativeAttentionTest(keras_parameterized.TestCase):
def test_attention_scores(self):
num_heads = 12
key_dim = 64
value_dim = 32
seq_length = 8
batch_size = 2
test_layer = attention.MultiHeadRelativeAttention(
num_heads=num_heads,
key_dim=key_dim,
value_dim=value_dim)
query = tf.random.normal(
shape=(batch_size, seq_length, key_dim))
value = query
relative_position_encoding = tf.random.normal(
shape=(batch_size, seq_length * 2, key_dim))
content_attention_bias = tf.random.normal(
shape=(num_heads, key_dim))
positional_attention_bias = tf.random.normal(
shape=(num_heads, key_dim))
output = test_layer(
query=query,
value=value,
content_attention_bias=content_attention_bias,
positional_attention_bias=positional_attention_bias,
relative_position_encoding=relative_position_encoding,
state=None,
attention_mask=None)
self.assertEqual(output.shape, [batch_size, seq_length, key_dim])
if __name__ == "__main__": if __name__ == "__main__":
tf.test.main() tf.test.main()
# Lint as: python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based relative attention layers."""
import math
import string
import tensorflow as tf
_CHR_IDX = string.ascii_lowercase
def _build_proj_equation(free_dims, bound_dims, output_dims):
"""Builds an einsum equation for projections inside multi-head attention."""
input_str = ""
kernel_str = ""
output_str = ""
bias_axes = ""
letter_offset = 0
for i in range(free_dims):
char = _CHR_IDX[i + letter_offset]
input_str += char
output_str += char
letter_offset += free_dims
for i in range(bound_dims):
char = _CHR_IDX[i + letter_offset]
input_str += char
kernel_str += char
letter_offset += bound_dims
for i in range(output_dims):
char = _CHR_IDX[i + letter_offset]
kernel_str += char
output_str += char
bias_axes += char
equation = "%s,%s->%s" % (input_str, kernel_str, output_str)
return equation, bias_axes, len(output_str)
def _get_output_shape(output_rank, known_last_dims):
return [None] * (output_rank - len(known_last_dims)) + list(known_last_dims)
def _large_compatible_negative(tensor_type):
"""Large negative number as Tensor.
This function is necessary because the standard value for epsilon
in this module (-1e9) cannot be represented using tf.float16
Args:
tensor_type: a dtype to determine the type.
Returns:
a large negative number.
"""
if tensor_type == tf.float16:
return tf.float16.min
return -1e9
def _rel_shift(x, klen=-1):
"""Performs relative shift to form the relative attention score."""
x = tf.transpose(x, perm=[2, 3, 0, 1])
x_size = tf.shape(x)
x = tf.reshape(x, [x_size[1], x_size[0], x_size[2], x_size[3]])
x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1])
x = tf.reshape(x, [x_size[0], x_size[1] - 1, x_size[2], x_size[3]])
x = tf.slice(x, [0, 0, 0, 0], [-1, klen, -1, -1])
x = tf.transpose(x, perm=[2, 3, 0, 1])
return x
@tf.keras.utils.register_keras_serializable(package="Text")
class MultiHeadRelativeAttention(tf.keras.layers.MultiHeadAttention):
"""A multi-head attention layer with relative attention + position encoding.
This layer shares the same input/output projections as the common
MultiHeadAttention layer.
When it calculates attention logits, position encoding is projected to form
relative keys. The logits are composed by shifted relative logits and content
logits.
**Note: This layer is currently experimental.
Attributes:
num_heads: The number of attention heads.
key_dim: Size of each attention head for query and key.
value_dim: Size of attention head for value.
dropout: Dropout probability for attention.
use_bias: Boolean, whether the dense layers use bias vectors/matrices.
kernel_initializer: Initializer for dense layer kernels.
bias_initializer: Initializer for dense layer biases.
Call args:
query: Query `Tensor` of shape `[B, T, dim]`.
value: Value `Tensor` of shape `[B, S, dim]`.
content_attention_bias: Bias `Tensor` for content based attention of shape
`[num_heads, dim]`.
position_attention_bias: Bias `Tensor` for position based attention of shape
`[num_heads, dim]`.
key: Optional key `Tensor` of shape `[B, S, dim]`. If not given, will use
`value` for both `key` and `value`, which is the most common case.
relative_position_encoding: Relative positional encoding `Tensor` of shape
`[B, L, dim]`.
segment_matrix: Optional `Tensor` representing segmentation IDs used in
XLNet of shape `[B, S, S + M]`.
segment_encoding: Optional `Tensor` representing the segmentation
encoding as used in XLNet of shape `[2, num_heads, dim]`.
segment_attention_bias: Optional trainable bias parameter added to the
query had when calculating the segment-based attention score used in
XLNet of shape `[num_heads, dim]`.
state: Optional `Tensor` of shape [B, M, E] where M is the length of the
state or memory.
If passed, this is also attended over as in Transformer XL.
attention_mask: a boolean mask of shape `[B, T, S]` that prevents attention
to certain positions.
"""
def __init__(self,
kernel_initializer="variance_scaling",
**kwargs):
super().__init__(kernel_initializer=kernel_initializer,
**kwargs)
def _build_from_signature(self, query, value, key=None):
super(MultiHeadRelativeAttention, self)._build_from_signature(
query=query,
value=value,
key=key)
if hasattr(value, "shape"):
value_shape = tf.TensorShape(value.shape)
else:
value_shape = value
if key is None:
key_shape = value_shape
elif hasattr(key, "shape"):
key_shape = tf.TensorShape(key.shape)
else:
key_shape = key
common_kwargs = dict(
kernel_initializer=self._kernel_initializer,
bias_initializer=self._bias_initializer,
kernel_regularizer=self._kernel_regularizer,
bias_regularizer=self._bias_regularizer,
activity_regularizer=self._activity_regularizer,
kernel_constraint=self._kernel_constraint,
bias_constraint=self._bias_constraint)
with tf.init_scope():
einsum_equation, _, output_rank = _build_proj_equation(
key_shape.rank - 1, bound_dims=1, output_dims=2)
self._encoding_dense = tf.keras.layers.experimental.EinsumDense(
einsum_equation,
output_shape=_get_output_shape(output_rank - 1,
[self._num_heads, self._key_dim]),
bias_axes=None,
name="encoding",
**common_kwargs)
def compute_attention(self,
query,
key,
value,
position,
content_attention_bias,
positional_attention_bias,
segment_matrix=None,
segment_encoding=None,
segment_attention_bias=None,
attention_mask=None):
"""Computes the attention.
This function defines the computation inside `call` with projected
multihead Q, K, V, R inputs.
Args:
query: Projected query `Tensor` of shape `[B, T, N, key_dim]`.
key: Projected key `Tensor` of shape `[B, S + M, N, key_dim]`.
value: Projected value `Tensor` of shape `[B, S + M, N, key_dim]`.
position: Projected position `Tensor` of shape `[B, L, N, key_dim]`.
content_attention_bias: Trainable bias parameter added to the query head
when calculating the content-based attention score.
positional_attention_bias: Trainable bias parameter added to the query
head when calculating the position-based attention score.
segment_matrix: Optional `Tensor` representing segmentation IDs used in
XLNet.
segment_encoding: Optional trainable `Tensor` representing the
segmentation encoding as used in XLNet.
segment_attention_bias: Optional trainable bias parameter added to the
query had when calculating the segment-based attention score used in
XLNet.
attention_mask: (default None) Optional mask that is added to attention
logits. If state is not None, the mask source sequence dimension should
extend M.
Returns:
attention_output: Multi-headed output of attention computation of shape
`[B, S, N, key_dim]`.
"""
content_attention = tf.einsum(self._dot_product_equation,
key,
query + content_attention_bias)
positional_attention = tf.einsum(self._dot_product_equation,
position,
query + positional_attention_bias)
positional_attention = _rel_shift(
positional_attention, klen=tf.shape(content_attention)[3])
if segment_matrix is not None:
segment_attention = tf.einsum("bind,snd->bnis",
query + segment_attention_bias,
segment_encoding)
target_shape = tf.shape(positional_attention)
segment_attention = tf.where(
tf.broadcast_to(tf.expand_dims(segment_matrix, 1), target_shape),
tf.broadcast_to(segment_attention[:, :, :, 1:], target_shape),
tf.broadcast_to(segment_attention[:, :, :, :1], target_shape))
attention_sum = (
content_attention + positional_attention + segment_attention)
else:
attention_sum = content_attention + positional_attention
attention_scores = tf.multiply(
attention_sum, 1.0 / math.sqrt(float(self._key_dim)))
# `attention_scores`: `[B, N, S, S + M]`
if attention_mask is not None:
attention_scores += (_large_compatible_negative(attention_scores.dtype)
* attention_mask)
attention_scores = tf.nn.softmax(attention_scores, 3)
attention_output = self._dropout_layer(attention_scores)
attention_output = tf.einsum(self._combine_equation,
attention_output,
value)
return attention_output
def call(self,
query,
value,
content_attention_bias,
positional_attention_bias,
key=None,
relative_position_encoding=None,
segment_matrix=None,
segment_encoding=None,
segment_attention_bias=None,
state=None,
attention_mask=None):
"""Compute multi-head relative attention over inputs.
Size glossary:
* Number of heads (H): the number of attention heads.
* Value size (V): the size of each value embedding per head.
* Key size (K): the size of each key embedding per head. Equally, the size
of each query embedding per head. Typically K <= V.
* Batch dimensions (B).
* Query (target) attention axes shape (T).
* Value (source) attention axes shape (S), the rank must match the target.
* Encoding length (L): The relative positional encoding length.
Args:
query: attention input.
value: attention input.
content_attention_bias: A trainable bias parameter added to the query
head when calculating the content-based attention score.
positional_attention_bias: A trainable bias parameter added to the query
head when calculating the position-based attention score.
key: attention input.
relative_position_encoding: relative positional encoding for key and
value.
segment_matrix: Optional `Tensor` representing segmentation IDs used in
XLNet.
segment_encoding: Optional `Tensor` representing the segmentation
encoding as used in XLNet.
segment_attention_bias: Optional trainable bias parameter added to the
query had when calculating the segment-based attention score used in
XLNet.
state: (default None) optional state. If passed, this is also attended
over as in TransformerXL.
attention_mask: (default None) Optional mask that is added to attention
logits. If state is not None, the mask source sequence dimension should
extend M.
Returns:
attention_output: The result of the computation, of shape [B, T, E],
where `T` is for target sequence shapes and `E` is the query input last
dimension if `output_shape` is `None`. Otherwise, the multi-head outputs
are projected to the shape specified by `output_shape`.
"""
if not self._built_from_signature:
self._build_from_signature(query, value, key=key)
if key is None:
key = value
if state is not None and state.shape.ndims > 1:
value = tf.concat([state, value], 1)
key = tf.concat([state, key], 1)
# `query` = [B, T, N ,H]
query = self._query_dense(query)
# `key` = [B, S + M, N, H]
key = self._key_dense(key)
# `value` = [B, S + M, N, H]
value = self._value_dense(value)
# `position` = [B, L, N, H]
position = self._encoding_dense(relative_position_encoding)
attention_output = self.compute_attention(
query=query,
key=key,
value=value,
position=position,
content_attention_bias=content_attention_bias,
positional_attention_bias=positional_attention_bias,
segment_matrix=segment_matrix,
segment_encoding=segment_encoding,
segment_attention_bias=segment_attention_bias,
attention_mask=attention_mask)
# `attention_output` = [B, S, N, H]
attention_output = self._output_dense(attention_output)
return attention_output
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for the attention layer."""
import numpy as np
import tensorflow as tf
from tensorflow.python.distribute import combinations
from tensorflow.python.keras import keras_parameterized # pylint: disable=g-direct-tensorflow-import
from official.nlp.modeling.layers import relative_attention
def _create_mock_attention_data(
num_heads,
key_dim,
value_dim,
seq_length,
batch_size,
memory_length=0,
include_state=False,
include_mask=False,
include_segment=False):
"""Creates mock testing data.
Args:
num_heads: `int`, Number of attention heads.
key_dim: `int`, Size of query head.
value_dim: `int`, Size of key, value dim.
seq_length: `int`, Sequence length of the input.
batch_size: `int`, the batch size.
memory_length: optional `int`, the length of the state. Defaults to 0.
include_state: optional `bool`, whether or not to include state data.
include_mask: optional `bool`, whether or not to include mask data.
include_segment: optional `bool`, whether or not to include segment data.
Returns:
A dictionary with `str` as keys and `Tensor` as values.
"""
query_shape = (batch_size, seq_length, key_dim)
value_shape = (batch_size, seq_length, value_dim)
encoding_shape = (batch_size, seq_length * 2, key_dim)
attention_bias_shape = (num_heads, key_dim)
data = dict(
query=tf.random.normal(shape=query_shape),
value=tf.random.normal(shape=value_shape),
key=tf.random.normal(shape=value_shape),
relative_position_encoding=tf.random.normal(shape=encoding_shape),
content_attention_bias=tf.random.normal(shape=attention_bias_shape),
positional_attention_bias=tf.random.normal(shape=attention_bias_shape))
if include_state:
total_seq_length = seq_length + memory_length
state_data = dict(
state=tf.random.normal(shape=(batch_size, memory_length, value_dim)))
data.update(state_data)
else:
total_seq_length = seq_length
if include_mask:
mask_shape = (batch_size, num_heads, seq_length, total_seq_length)
mask_data = dict(
attention_mask=np.random.randint(2, size=mask_shape).astype("float32"))
data.update(mask_data)
if include_segment:
segment_encoding_shape = (2, num_heads, key_dim)
segment_matrix = np.random.randint(
2, size=(batch_size, seq_length, total_seq_length))
segment_matrix = tf.math.equal(segment_matrix, 1)
segment_data = dict(
segment_attention_bias=tf.random.normal(shape=attention_bias_shape),
segment_encoding=tf.random.normal(shape=segment_encoding_shape),
segment_matrix=segment_matrix)
data.update(segment_data)
return data
@keras_parameterized.run_all_keras_modes
class MultiHeadRelativeAttentionTest(keras_parameterized.TestCase):
@combinations.generate(combinations.combine(
value_dim=[32, 64],
memory_length=[0, 4],
state=[True, False],
mask=[True, False],
segment=[True, False]))
def test_attention_scores(self,
value_dim,
memory_length,
state,
mask,
segment):
"""Tests combinations of attention score calculations."""
batch_size, num_heads, key_dim, seq_length = 2, 12, 64, 8
test_layer = relative_attention.MultiHeadRelativeAttention(
num_heads=num_heads,
key_dim=key_dim,
value_dim=value_dim)
data = _create_mock_attention_data(
num_heads=num_heads,
key_dim=key_dim,
value_dim=value_dim,
seq_length=seq_length,
memory_length=memory_length,
batch_size=batch_size,
include_state=state,
include_mask=mask,
include_segment=segment)
output = test_layer(**data)
self.assertEqual(output.shape, [batch_size, seq_length, key_dim])
if __name__ == "__main__":
np.random.seed(0)
tf.random.set_seed(0)
tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment