Commit 2ab8af9f authored by Gunho Park's avatar Gunho Park
Browse files

update training driver

parent db4f3f1b
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""All necessary imports for registration."""
# pylint: disable=unused-import
from official.vision import beta
from official.vision.beta.projects.basnet.configs import basnet
from official.vision.beta.projects.basnet.modeling import basnet_model
from official.vision.beta.projects.basnet.modeling import refunet
from official.vision.beta.projects.basnet.tasks import basnet
# Lint as: python3 # Copyright 2021 The TensorFlow Authors. All Rights Reserved.
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
...@@ -12,61 +11,20 @@ ...@@ -12,61 +11,20 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ==============================================================================
"""TensorFlow Model Garden Vision training driver.""" # Lint as: python3
"""TensorFlow Model Garden Vision training driver"""
from absl import app from absl import app
from absl import flags
import gin
# pylint: disable=unused-import
#from official.common import registry_imports
from official.vision.beta.projects.basnet.common import registry_imports
# pylint: enable=unused-import
from official.common import distribute_utils
from official.common import flags as tfm_flags from official.common import flags as tfm_flags
from official.core import task_factory from official.vision.beta import train
from official.core import train_lib from official.vision.beta.projects.basnet.configs import basnet
from official.core import train_utils from official.vision.beta.projects.basnet.modeling import basnet_model
from official.modeling import performance from official.vision.beta.projects.basnet.modeling import refunet
from official.vision.beta.projects.basnet.tasks import basnet
FLAGS = flags.FLAGS
def main(_):
gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_params)
params = train_utils.parse_configuration(FLAGS)
model_dir = FLAGS.model_dir
if 'train' in FLAGS.mode:
# Pure eval modes do not output yaml files. Otherwise continuous eval job
# may race against the train job for writing the same file.
train_utils.serialize_config(params, model_dir)
# Sets mixed_precision policy. Using 'mixed_float16' or 'mixed_bfloat16'
# can have significant impact on model speeds by utilizing float16 in case of
# GPUs, and bfloat16 in the case of TPUs. loss_scale takes effect only when
# dtype is float16
if params.runtime.mixed_precision_dtype:
performance.set_mixed_precision_policy(params.runtime.mixed_precision_dtype,
params.runtime.loss_scale,
use_experimental_api=True)
distribution_strategy = distribute_utils.get_distribution_strategy(
distribution_strategy=params.runtime.distribution_strategy,
all_reduce_alg=params.runtime.all_reduce_alg,
num_gpus=params.runtime.num_gpus,
tpu_address=params.runtime.tpu)
with distribution_strategy.scope():
task = task_factory.get_task(params.task, logging_dir=model_dir)
train_lib.run_experiment(
distribution_strategy=distribution_strategy,
task=task,
mode=FLAGS.mode,
params=params,
model_dir=model_dir)
train_utils.save_gin_config(FLAGS.mode, model_dir)
if __name__ == '__main__': if __name__ == '__main__':
tfm_flags.define_flags() tfm_flags.define_flags()
app.run(main) app.run(train.main)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment