Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
2986bcaf
Unverified
Commit
2986bcaf
authored
Sep 30, 2020
by
moneypi
Committed by
GitHub
Sep 29, 2020
Browse files
replace tf.compat.v1.logging with absl.logging for deep_speech (#9222)
parent
785f1a18
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
16 additions
and
13 deletions
+16
-13
research/deep_speech/data/dataset.py
research/deep_speech/data/dataset.py
+2
-1
research/deep_speech/data/download.py
research/deep_speech/data/download.py
+8
-7
research/deep_speech/deep_speech.py
research/deep_speech/deep_speech.py
+6
-5
No files found.
research/deep_speech/data/dataset.py
View file @
2986bcaf
...
...
@@ -24,6 +24,7 @@ import numpy as np
from
six.moves
import
xrange
# pylint: disable=redefined-builtin
import
soundfile
import
tensorflow
as
tf
from
absl
import
logging
# pylint: enable=g-bad-import-order
import
data.featurizer
as
featurizer
# pylint: disable=g-bad-import-order
...
...
@@ -125,7 +126,7 @@ def _preprocess_data(file_path):
A list of tuples (wav_filename, wav_filesize, transcript) sorted by
file_size.
"""
tf
.
compat
.
v1
.
logging
.
info
(
"Loading data set {}"
.
format
(
file_path
))
logging
.
info
(
"Loading data set {}"
.
format
(
file_path
))
with
tf
.
io
.
gfile
.
GFile
(
file_path
,
"r"
)
as
f
:
lines
=
f
.
read
().
splitlines
()
# Skip the csv header in lines[0].
...
...
research/deep_speech/data/download.py
View file @
2986bcaf
...
...
@@ -32,6 +32,7 @@ import pandas
from
six.moves
import
urllib
from
sox
import
Transformer
import
tensorflow
as
tf
from
absl
import
logging
LIBRI_SPEECH_URLS
=
{
"train-clean-100"
:
...
...
@@ -65,7 +66,7 @@ def download_and_extract(directory, url):
_
,
tar_filepath
=
tempfile
.
mkstemp
(
suffix
=
".tar.gz"
)
try
:
tf
.
compat
.
v1
.
logging
.
info
(
"Downloading %s to %s"
%
(
url
,
tar_filepath
))
logging
.
info
(
"Downloading %s to %s"
%
(
url
,
tar_filepath
))
def
_progress
(
count
,
block_size
,
total_size
):
sys
.
stdout
.
write
(
"
\r
>> Downloading {} {:.1f}%"
.
format
(
...
...
@@ -75,7 +76,7 @@ def download_and_extract(directory, url):
urllib
.
request
.
urlretrieve
(
url
,
tar_filepath
,
_progress
)
print
()
statinfo
=
os
.
stat
(
tar_filepath
)
tf
.
compat
.
v1
.
logging
.
info
(
logging
.
info
(
"Successfully downloaded %s, size(bytes): %d"
%
(
url
,
statinfo
.
st_size
))
with
tarfile
.
open
(
tar_filepath
,
"r"
)
as
tar
:
tar
.
extractall
(
directory
)
...
...
@@ -112,7 +113,7 @@ def convert_audio_and_split_transcript(input_dir, source_name, target_name,
output_file: the name of the newly generated csv file. e.g. test-clean.csv
"""
tf
.
compat
.
v1
.
logging
.
info
(
"Preprocessing audio and transcript for %s"
%
source_name
)
logging
.
info
(
"Preprocessing audio and transcript for %s"
%
source_name
)
source_dir
=
os
.
path
.
join
(
input_dir
,
source_name
)
target_dir
=
os
.
path
.
join
(
input_dir
,
target_name
)
...
...
@@ -149,7 +150,7 @@ def convert_audio_and_split_transcript(input_dir, source_name, target_name,
df
=
pandas
.
DataFrame
(
data
=
files
,
columns
=
[
"wav_filename"
,
"wav_filesize"
,
"transcript"
])
df
.
to_csv
(
csv_file_path
,
index
=
False
,
sep
=
"
\t
"
)
tf
.
compat
.
v1
.
logging
.
info
(
"Successfully generated csv file {}"
.
format
(
csv_file_path
))
logging
.
info
(
"Successfully generated csv file {}"
.
format
(
csv_file_path
))
def
download_and_process_datasets
(
directory
,
datasets
):
...
...
@@ -160,10 +161,10 @@ def download_and_process_datasets(directory, datasets):
datasets: list of dataset names that will be downloaded and processed.
"""
tf
.
compat
.
v1
.
logging
.
info
(
"Preparing LibriSpeech dataset: {}"
.
format
(
logging
.
info
(
"Preparing LibriSpeech dataset: {}"
.
format
(
","
.
join
(
datasets
)))
for
dataset
in
datasets
:
tf
.
compat
.
v1
.
logging
.
info
(
"Preparing dataset %s"
,
dataset
)
logging
.
info
(
"Preparing dataset %s"
,
dataset
)
dataset_dir
=
os
.
path
.
join
(
directory
,
dataset
)
download_and_extract
(
dataset_dir
,
LIBRI_SPEECH_URLS
[
dataset
])
convert_audio_and_split_transcript
(
...
...
@@ -202,7 +203,7 @@ def main(_):
if
__name__
==
"__main__"
:
tf
.
compat
.
v1
.
logging
.
set_verbosity
(
tf
.
compat
.
v1
.
logging
.
INFO
)
logging
.
set_verbosity
(
logging
.
INFO
)
define_data_download_flags
()
FLAGS
=
absl_flags
.
FLAGS
absl_app
.
run
(
main
)
research/deep_speech/deep_speech.py
View file @
2986bcaf
...
...
@@ -21,6 +21,7 @@ import os
# pylint: disable=g-bad-import-order
from
absl
import
app
as
absl_app
from
absl
import
flags
from
absl
import
logging
import
tensorflow
as
tf
# pylint: enable=g-bad-import-order
...
...
@@ -225,7 +226,7 @@ def run_deep_speech(_):
"""Run deep speech training and eval loop."""
tf
.
compat
.
v1
.
set_random_seed
(
flags_obj
.
seed
)
# Data preprocessing
tf
.
compat
.
v1
.
logging
.
info
(
"Data preprocessing..."
)
logging
.
info
(
"Data preprocessing..."
)
train_speech_dataset
=
generate_dataset
(
flags_obj
.
train_data_dir
)
eval_speech_dataset
=
generate_dataset
(
flags_obj
.
eval_data_dir
)
...
...
@@ -271,7 +272,7 @@ def run_deep_speech(_):
total_training_cycle
=
(
flags_obj
.
train_epochs
//
flags_obj
.
epochs_between_evals
)
for
cycle_index
in
range
(
total_training_cycle
):
tf
.
compat
.
v1
.
logging
.
info
(
"Starting a training cycle: %d/%d"
,
logging
.
info
(
"Starting a training cycle: %d/%d"
,
cycle_index
+
1
,
total_training_cycle
)
# Perform batch_wise dataset shuffling
...
...
@@ -282,7 +283,7 @@ def run_deep_speech(_):
estimator
.
train
(
input_fn
=
input_fn_train
)
# Evaluation
tf
.
compat
.
v1
.
logging
.
info
(
"Starting to evaluate..."
)
logging
.
info
(
"Starting to evaluate..."
)
eval_results
=
evaluate_model
(
estimator
,
eval_speech_dataset
.
speech_labels
,
...
...
@@ -290,7 +291,7 @@ def run_deep_speech(_):
# Log the WER and CER results.
benchmark_logger
.
log_evaluation_result
(
eval_results
)
tf
.
compat
.
v1
.
logging
.
info
(
logging
.
info
(
"Iteration {}: WER = {:.2f}, CER = {:.2f}"
.
format
(
cycle_index
+
1
,
eval_results
[
_WER_KEY
],
eval_results
[
_CER_KEY
]))
...
...
@@ -409,7 +410,7 @@ def main(_):
if
__name__
==
"__main__"
:
tf
.
compat
.
v1
.
logging
.
set_verbosity
(
tf
.
compat
.
v1
.
logging
.
INFO
)
logging
.
set_verbosity
(
logging
.
INFO
)
define_deep_speech_flags
()
flags_obj
=
flags
.
FLAGS
absl_app
.
run
(
main
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment