"python/vscode:/vscode.git/clone" did not exist on "963175d5c06a053399b2cf361295372ff1158e46"
Unverified Commit 2986bcaf authored by moneypi's avatar moneypi Committed by GitHub
Browse files

replace tf.compat.v1.logging with absl.logging for deep_speech (#9222)

parent 785f1a18
......@@ -24,6 +24,7 @@ import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import soundfile
import tensorflow as tf
from absl import logging
# pylint: enable=g-bad-import-order
import data.featurizer as featurizer # pylint: disable=g-bad-import-order
......@@ -125,7 +126,7 @@ def _preprocess_data(file_path):
A list of tuples (wav_filename, wav_filesize, transcript) sorted by
file_size.
"""
tf.compat.v1.logging.info("Loading data set {}".format(file_path))
logging.info("Loading data set {}".format(file_path))
with tf.io.gfile.GFile(file_path, "r") as f:
lines = f.read().splitlines()
# Skip the csv header in lines[0].
......
......@@ -32,6 +32,7 @@ import pandas
from six.moves import urllib
from sox import Transformer
import tensorflow as tf
from absl import logging
LIBRI_SPEECH_URLS = {
"train-clean-100":
......@@ -65,7 +66,7 @@ def download_and_extract(directory, url):
_, tar_filepath = tempfile.mkstemp(suffix=".tar.gz")
try:
tf.compat.v1.logging.info("Downloading %s to %s" % (url, tar_filepath))
logging.info("Downloading %s to %s" % (url, tar_filepath))
def _progress(count, block_size, total_size):
sys.stdout.write("\r>> Downloading {} {:.1f}%".format(
......@@ -75,7 +76,7 @@ def download_and_extract(directory, url):
urllib.request.urlretrieve(url, tar_filepath, _progress)
print()
statinfo = os.stat(tar_filepath)
tf.compat.v1.logging.info(
logging.info(
"Successfully downloaded %s, size(bytes): %d" % (url, statinfo.st_size))
with tarfile.open(tar_filepath, "r") as tar:
tar.extractall(directory)
......@@ -112,7 +113,7 @@ def convert_audio_and_split_transcript(input_dir, source_name, target_name,
output_file: the name of the newly generated csv file. e.g. test-clean.csv
"""
tf.compat.v1.logging.info("Preprocessing audio and transcript for %s" % source_name)
logging.info("Preprocessing audio and transcript for %s" % source_name)
source_dir = os.path.join(input_dir, source_name)
target_dir = os.path.join(input_dir, target_name)
......@@ -149,7 +150,7 @@ def convert_audio_and_split_transcript(input_dir, source_name, target_name,
df = pandas.DataFrame(
data=files, columns=["wav_filename", "wav_filesize", "transcript"])
df.to_csv(csv_file_path, index=False, sep="\t")
tf.compat.v1.logging.info("Successfully generated csv file {}".format(csv_file_path))
logging.info("Successfully generated csv file {}".format(csv_file_path))
def download_and_process_datasets(directory, datasets):
......@@ -160,10 +161,10 @@ def download_and_process_datasets(directory, datasets):
datasets: list of dataset names that will be downloaded and processed.
"""
tf.compat.v1.logging.info("Preparing LibriSpeech dataset: {}".format(
logging.info("Preparing LibriSpeech dataset: {}".format(
",".join(datasets)))
for dataset in datasets:
tf.compat.v1.logging.info("Preparing dataset %s", dataset)
logging.info("Preparing dataset %s", dataset)
dataset_dir = os.path.join(directory, dataset)
download_and_extract(dataset_dir, LIBRI_SPEECH_URLS[dataset])
convert_audio_and_split_transcript(
......@@ -202,7 +203,7 @@ def main(_):
if __name__ == "__main__":
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
logging.set_verbosity(logging.INFO)
define_data_download_flags()
FLAGS = absl_flags.FLAGS
absl_app.run(main)
......@@ -21,6 +21,7 @@ import os
# pylint: disable=g-bad-import-order
from absl import app as absl_app
from absl import flags
from absl import logging
import tensorflow as tf
# pylint: enable=g-bad-import-order
......@@ -225,7 +226,7 @@ def run_deep_speech(_):
"""Run deep speech training and eval loop."""
tf.compat.v1.set_random_seed(flags_obj.seed)
# Data preprocessing
tf.compat.v1.logging.info("Data preprocessing...")
logging.info("Data preprocessing...")
train_speech_dataset = generate_dataset(flags_obj.train_data_dir)
eval_speech_dataset = generate_dataset(flags_obj.eval_data_dir)
......@@ -271,7 +272,7 @@ def run_deep_speech(_):
total_training_cycle = (flags_obj.train_epochs //
flags_obj.epochs_between_evals)
for cycle_index in range(total_training_cycle):
tf.compat.v1.logging.info("Starting a training cycle: %d/%d",
logging.info("Starting a training cycle: %d/%d",
cycle_index + 1, total_training_cycle)
# Perform batch_wise dataset shuffling
......@@ -282,7 +283,7 @@ def run_deep_speech(_):
estimator.train(input_fn=input_fn_train)
# Evaluation
tf.compat.v1.logging.info("Starting to evaluate...")
logging.info("Starting to evaluate...")
eval_results = evaluate_model(
estimator, eval_speech_dataset.speech_labels,
......@@ -290,7 +291,7 @@ def run_deep_speech(_):
# Log the WER and CER results.
benchmark_logger.log_evaluation_result(eval_results)
tf.compat.v1.logging.info(
logging.info(
"Iteration {}: WER = {:.2f}, CER = {:.2f}".format(
cycle_index + 1, eval_results[_WER_KEY], eval_results[_CER_KEY]))
......@@ -409,7 +410,7 @@ def main(_):
if __name__ == "__main__":
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
logging.set_verbosity(logging.INFO)
define_deep_speech_flags()
flags_obj = flags.FLAGS
absl_app.run(main)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment