Commit 28d7aac1 authored by syiming's avatar syiming
Browse files

Change rpn_box_predictor_features into a list.

parent 6ebbfe13
...@@ -762,7 +762,7 @@ class FasterRCNNMetaArch(model.DetectionModel): ...@@ -762,7 +762,7 @@ class FasterRCNNMetaArch(model.DetectionModel):
Returns: Returns:
prediction_dict: a dictionary holding "raw" prediction tensors: prediction_dict: a dictionary holding "raw" prediction tensors:
1) rpn_box_predictor_features: A 4-D float32 tensor with shape 1) rpn_box_predictor_features: A list of 4-D float32 tensor with shape
[batch_size, height, width, depth] to be used for predicting proposal [batch_size, height, width, depth] to be used for predicting proposal
boxes and corresponding objectness scores. boxes and corresponding objectness scores.
2) rpn_features_to_crop: A list of 4-D float32 tensor with shape 2) rpn_features_to_crop: A list of 4-D float32 tensor with shape
...@@ -1356,7 +1356,7 @@ class FasterRCNNMetaArch(model.DetectionModel): ...@@ -1356,7 +1356,7 @@ class FasterRCNNMetaArch(model.DetectionModel):
Note resulting tensors will not have been postprocessed. Note resulting tensors will not have been postprocessed.
Args: Args:
rpn_box_predictor_features: A 4-D float32 tensor with shape rpn_box_predictor_features: A list of 4-D float32 tensor with shape
[batch, height, width, depth] to be used for predicting proposal boxes [batch, height, width, depth] to be used for predicting proposal boxes
and corresponding objectness scores. and corresponding objectness scores.
...@@ -1381,10 +1381,10 @@ class FasterRCNNMetaArch(model.DetectionModel): ...@@ -1381,10 +1381,10 @@ class FasterRCNNMetaArch(model.DetectionModel):
'corresponding to a single feature map.') 'corresponding to a single feature map.')
if self._first_stage_box_predictor.is_keras_model: if self._first_stage_box_predictor.is_keras_model:
box_predictions = self._first_stage_box_predictor( box_predictions = self._first_stage_box_predictor(
[rpn_box_predictor_features]) rpn_box_predictor_features)
else: else:
box_predictions = self._first_stage_box_predictor.predict( box_predictions = self._first_stage_box_predictor.predict(
[rpn_box_predictor_features], rpn_box_predictor_features,
num_anchors_per_location, num_anchors_per_location,
scope=self.first_stage_box_predictor_scope) scope=self.first_stage_box_predictor_scope)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment