"...resnet50_tensorflow.git" did not exist on "c9bb58f2c86375dce38a80853f55fcf282a8b6cd"
Commit 284799f0 authored by Charles Reid's avatar Charles Reid
Browse files

Consistent, fixed-width printing from adversarial crypto example.

Make the progress printed from the adversarial crypto example
print columns in a consistently-formatted way.
parent edcd29f2
...@@ -117,7 +117,7 @@ class AdversarialCrypto(object): ...@@ -117,7 +117,7 @@ class AdversarialCrypto(object):
return in_m, in_k return in_m, in_k
def model(self, collection, message, key=None): def model(self, collection, message, key=None):
"""The model for Alice, Bob, and Eve. If key=None, the first FC layer """The model for Alice, Bob, and Eve. If key=None, the first fully connected layer
takes only the message as inputs. Otherwise, it uses both the key takes only the message as inputs. Otherwise, it uses both the key
and the message. and the message.
...@@ -206,7 +206,7 @@ def doeval(s, ac, n, itercount): ...@@ -206,7 +206,7 @@ def doeval(s, ac, n, itercount):
itercount: Iteration count label for logging. itercount: Iteration count label for logging.
Returns: Returns:
Bob and eve's loss, as a percent of bits incorrect. Bob and Eve's loss, as a percent of bits incorrect.
""" """
bob_loss_accum = 0 bob_loss_accum = 0
...@@ -217,7 +217,7 @@ def doeval(s, ac, n, itercount): ...@@ -217,7 +217,7 @@ def doeval(s, ac, n, itercount):
eve_loss_accum += el eve_loss_accum += el
bob_loss_percent = bob_loss_accum / (n * FLAGS.batch_size) bob_loss_percent = bob_loss_accum / (n * FLAGS.batch_size)
eve_loss_percent = eve_loss_accum / (n * FLAGS.batch_size) eve_loss_percent = eve_loss_accum / (n * FLAGS.batch_size)
print('%d %.2f %.2f' % (itercount, bob_loss_percent, eve_loss_percent)) print('%10d\t%20.2f\t%20.2f'%(itercount, bob_loss_percent, eve_loss_percent))
sys.stdout.flush() sys.stdout.flush()
return bob_loss_percent, eve_loss_percent return bob_loss_percent, eve_loss_percent
...@@ -245,7 +245,7 @@ def train_and_evaluate(): ...@@ -245,7 +245,7 @@ def train_and_evaluate():
with tf.Session() as s: with tf.Session() as s:
s.run(init) s.run(init)
print('# Batch size: ', FLAGS.batch_size) print('# Batch size: ', FLAGS.batch_size)
print('# Iter Bob_Recon_Error Eve_Recon_Error') print('# %10s\t%20s\t%20s'%("Iter","Bob_Recon_Error","Eve_Recon_Error"))
if train_until_thresh(s, ac): if train_until_thresh(s, ac):
for _ in xrange(EVE_EXTRA_ROUNDS): for _ in xrange(EVE_EXTRA_ROUNDS):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment