Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
266026c9
Commit
266026c9
authored
Aug 02, 2020
by
TF Object Detection Team
Browse files
Merge pull request #8894 from syiming:adjust_proto_file_frcnn_fpn
PiperOrigin-RevId: 324505842
parents
03f907d8
4152a5c7
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
69 additions
and
47 deletions
+69
-47
research/object_detection/protos/faster_rcnn.proto
research/object_detection/protos/faster_rcnn.proto
+18
-0
research/object_detection/protos/fpn.proto
research/object_detection/protos/fpn.proto
+50
-0
research/object_detection/protos/ssd.proto
research/object_detection/protos/ssd.proto
+1
-47
No files found.
research/object_detection/protos/faster_rcnn.proto
View file @
266026c9
...
@@ -8,6 +8,7 @@ import "object_detection/protos/hyperparams.proto";
...
@@ -8,6 +8,7 @@ import "object_detection/protos/hyperparams.proto";
import
"object_detection/protos/image_resizer.proto"
;
import
"object_detection/protos/image_resizer.proto"
;
import
"object_detection/protos/losses.proto"
;
import
"object_detection/protos/losses.proto"
;
import
"object_detection/protos/post_processing.proto"
;
import
"object_detection/protos/post_processing.proto"
;
import
"object_detection/protos/fpn.proto"
;
// Configuration for Faster R-CNN models.
// Configuration for Faster R-CNN models.
// See meta_architectures/faster_rcnn_meta_arch.py and models/model_builder.py
// See meta_architectures/faster_rcnn_meta_arch.py and models/model_builder.py
...
@@ -212,4 +213,21 @@ message FasterRcnnFeatureExtractor {
...
@@ -212,4 +213,21 @@ message FasterRcnnFeatureExtractor {
// When training with a relative large batch size (e.g. 8), it could be
// When training with a relative large batch size (e.g. 8), it could be
// desirable to enable batch norm update.
// desirable to enable batch norm update.
optional
bool
batch_norm_trainable
=
3
[
default
=
false
];
optional
bool
batch_norm_trainable
=
3
[
default
=
false
];
// Hyperparameters that affect the layers of feature extractor added on top
// of the base feature extractor.
optional
Hyperparams
conv_hyperparams
=
4
;
// if the value is set to true, the base feature extractor's hyperparams will
// be overridden with the `conv_hyperparams`.
optional
bool
override_base_feature_extractor_hyperparams
=
5
[
default
=
false
];
// The nearest multiple to zero-pad the input height and width dimensions to.
// For example, if pad_to_multiple = 2, input dimensions are zero-padded
// until the resulting dimensions are even.
optional
int32
pad_to_multiple
=
6
[
default
=
32
];
// Feature Pyramid Networks config.
optional
FeaturePyramidNetworks
fpn
=
7
;
}
}
research/object_detection/protos/fpn.proto
0 → 100644
View file @
266026c9
syntax
=
"proto2"
;
package
object_detection
.
protos
;
// Configuration for Feature Pyramid Networks.
message
FeaturePyramidNetworks
{
// We recommend to use multi_resolution_feature_map_generator with FPN, and
// the levels there must match the levels defined below for better
// performance.
// Correspondence from FPN levels to Resnet/Mobilenet V1 feature maps:
// FPN Level Resnet Feature Map Mobilenet-V1 Feature Map
// 2 Block 1 Conv2d_3_pointwise
// 3 Block 2 Conv2d_5_pointwise
// 4 Block 3 Conv2d_11_pointwise
// 5 Block 4 Conv2d_13_pointwise
// 6 Bottomup_5 bottom_up_Conv2d_14
// 7 Bottomup_6 bottom_up_Conv2d_15
// 8 Bottomup_7 bottom_up_Conv2d_16
// 9 Bottomup_8 bottom_up_Conv2d_17
// minimum level in feature pyramid
optional
int32
min_level
=
1
[
default
=
3
];
// maximum level in feature pyramid
optional
int32
max_level
=
2
[
default
=
7
];
// channel depth for additional coarse feature layers.
optional
int32
additional_layer_depth
=
3
[
default
=
256
];
}
// Configuration for Bidirectional Feature Pyramid Networks.
message
BidirectionalFeaturePyramidNetworks
{
// minimum level in the feature pyramid.
optional
int32
min_level
=
1
[
default
=
3
];
// maximum level in the feature pyramid.
optional
int32
max_level
=
2
[
default
=
7
];
// The number of repeated top-down bottom-up iterations for BiFPN-based
// feature extractors (bidirectional feature pyramid networks).
optional
int32
num_iterations
=
3
;
// The number of filters (channels) to use in feature pyramid layers for
// BiFPN-based feature extractors (bidirectional feature pyramid networks).
optional
int32
num_filters
=
4
;
// Method used to combine inputs to BiFPN nodes.
optional
string
combine_method
=
5
[
default
=
'fast_attention'
];
}
research/object_detection/protos/ssd.proto
View file @
266026c9
...
@@ -11,6 +11,7 @@ import "object_detection/protos/losses.proto";
...
@@ -11,6 +11,7 @@ import "object_detection/protos/losses.proto";
import
"object_detection/protos/matcher.proto"
;
import
"object_detection/protos/matcher.proto"
;
import
"object_detection/protos/post_processing.proto"
;
import
"object_detection/protos/post_processing.proto"
;
import
"object_detection/protos/region_similarity_calculator.proto"
;
import
"object_detection/protos/region_similarity_calculator.proto"
;
import
"object_detection/protos/fpn.proto"
;
// Configuration for Single Shot Detection (SSD) models.
// Configuration for Single Shot Detection (SSD) models.
// Next id: 27
// Next id: 27
...
@@ -203,50 +204,3 @@ message SsdFeatureExtractor {
...
@@ -203,50 +204,3 @@ message SsdFeatureExtractor {
}
}
// Configuration for Feature Pyramid Networks.
message
FeaturePyramidNetworks
{
// We recommend to use multi_resolution_feature_map_generator with FPN, and
// the levels there must match the levels defined below for better
// performance.
// Correspondence from FPN levels to Resnet/Mobilenet V1 feature maps:
// FPN Level Resnet Feature Map Mobilenet-V1 Feature Map
// 2 Block 1 Conv2d_3_pointwise
// 3 Block 2 Conv2d_5_pointwise
// 4 Block 3 Conv2d_11_pointwise
// 5 Block 4 Conv2d_13_pointwise
// 6 Bottomup_5 bottom_up_Conv2d_14
// 7 Bottomup_6 bottom_up_Conv2d_15
// 8 Bottomup_7 bottom_up_Conv2d_16
// 9 Bottomup_8 bottom_up_Conv2d_17
// minimum level in feature pyramid
optional
int32
min_level
=
1
[
default
=
3
];
// maximum level in feature pyramid
optional
int32
max_level
=
2
[
default
=
7
];
// channel depth for additional coarse feature layers.
optional
int32
additional_layer_depth
=
3
[
default
=
256
];
}
// Configuration for Bidirectional Feature Pyramid Networks.
message
BidirectionalFeaturePyramidNetworks
{
// minimum level in the feature pyramid.
optional
int32
min_level
=
1
[
default
=
3
];
// maximum level in the feature pyramid.
optional
int32
max_level
=
2
[
default
=
7
];
// The number of repeated top-down bottom-up iterations for BiFPN-based
// feature extractors (bidirectional feature pyramid networks).
optional
int32
num_iterations
=
3
;
// The number of filters (channels) to use in feature pyramid layers for
// BiFPN-based feature extractors (bidirectional feature pyramid networks).
optional
int32
num_filters
=
4
;
// Method used to combine inputs to BiFPN nodes.
optional
string
combine_method
=
5
[
default
=
'fast_attention'
];
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment