Commit 24308bbc authored by Hongkun Yu's avatar Hongkun Yu Committed by A. Unique TensorFlower
Browse files

Add resnet_config.py.

Remove callback_test.py as it uses private TF symbol callback_test

PiperOrigin-RevId: 302990143
parent 38486725
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for callbacks."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import collections
import functools
import os
from absl.testing import parameterized
import numpy as np
import tensorflow as tf
from tensorflow.python.keras import callbacks_test
from tensorflow.python.keras import keras_parameterized
from official.vision.image_classification import callbacks
_ObservedSummary = collections.namedtuple('_ObservedSummary', ('logdir', 'tag'))
def _trivial_function(a):
return a
class UtilFunctionTests(tf.test.TestCase, parameterized.TestCase):
"""Tests to check utility functions provided in callbacks.py."""
@parameterized.named_parameters(
('integer', 1),
('float', 1.),
('lambda', lambda: 1),
('partial', functools.partial(_trivial_function, 1)))
def test_scalar_from_tensors(self, t):
t = tf.Variable(t)
value = callbacks.get_scalar_from_tensor(t)
print (value)
self.assertTrue(np.isscalar(value))
@keras_parameterized.run_with_all_model_types
@keras_parameterized.run_all_keras_modes(always_skip_v1=True)
class CustomTensorBoardTest(callbacks_test.TestTensorBoardV2):
def test_custom_tb_learning_rate(self):
os.chdir(self.get_temp_dir())
model = self._get_model()
x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1))
tb_cbk = callbacks.CustomTensorBoard(log_dir=self.logdir,
track_lr=True)
model.fit(
x,
y,
batch_size=2,
epochs=2,
validation_data=(x, y),
callbacks=[tb_cbk])
summary_file = callbacks_test.list_summaries(logdir=self.logdir)
self.assertEqual(
summary_file.scalars, {
_ObservedSummary(logdir=self.train_dir, tag='epoch_loss'),
_ObservedSummary(logdir=self.train_dir, tag='epoch_learning_rate'),
_ObservedSummary(logdir=self.validation_dir, tag='epoch_loss'),
})
if __name__ == '__main__':
tf.test.main()
# Lint as: python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Configuration definitions for ResNet losses, learning rates, and optimizers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Any, Mapping
import dataclasses
from official.vision.image_classification.configs import base_configs
_RESNET_LR_SCHEDULE = [ # (multiplier, epoch to start) tuples
(1.0, 5), (0.1, 30), (0.01, 60), (0.001, 80)
]
_RESNET_LR_BOUNDARIES = list(p[1] for p in _RESNET_LR_SCHEDULE[1:])
_RESNET_LR_MULTIPLIERS = list(p[0] for p in _RESNET_LR_SCHEDULE)
_RESNET_LR_WARMUP_EPOCHS = _RESNET_LR_SCHEDULE[0][1]
@dataclasses.dataclass
class ResNetModelConfig(base_configs.ModelConfig):
"""Configuration for the ResNet model."""
name: str = 'ResNet'
num_classes: int = 1000
model_params: Mapping[str, Any] = dataclasses.field(default_factory=lambda: {
'num_classes': 1000,
'batch_size': None,
'use_l2_regularizer': True,
'rescale_inputs': False,
})
loss: base_configs.LossConfig = base_configs.LossConfig(
name='sparse_categorical_crossentropy')
optimizer: base_configs.OptimizerConfig = base_configs.OptimizerConfig(
name='momentum',
decay=0.9,
epsilon=0.001,
momentum=0.9,
moving_average_decay=None)
learning_rate: base_configs.LearningRateConfig = (
base_configs.LearningRateConfig(
name='piecewise_constant_with_warmup',
examples_per_epoch=1281167,
warmup_epochs=_RESNET_LR_WARMUP_EPOCHS,
boundaries=_RESNET_LR_BOUNDARIES,
multipliers=_RESNET_LR_MULTIPLIERS))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment