Unverified Commit 234011f8 authored by Srihari Humbarwadi's avatar Srihari Humbarwadi Committed by GitHub
Browse files

Merge pull request #5 from srihari-humbarwadi/training

 * set segmentation loss weight to 0.5
 * skip boxes with zero area while pasting masks
parents d1f01835 b14f82a3
......@@ -107,7 +107,7 @@ class Losses(maskrcnn.Losses):
semantic_segmentation_use_groundtruth_dimension: bool = True
semantic_segmentation_top_k_percent_pixels: float = 1.0
instance_segmentation_weight: float = 1.0
semantic_segmentation_weight: float = 1.0
semantic_segmentation_weight: float = 0.5
@dataclasses.dataclass
......@@ -170,7 +170,8 @@ def panoptic_fpn_coco() -> cfg.ExperimentConfig:
is_thing.append(True if idx <= num_thing_categories else False)
config = cfg.ExperimentConfig(
runtime=cfg.RuntimeConfig(mixed_precision_dtype='bfloat16'),
runtime=cfg.RuntimeConfig(
mixed_precision_dtype='bfloat16', enable_xla=True),
task=PanopticMaskRCNNTask(
init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/resnet50_imagenet/ckpt-28080', # pylint: disable=line-too-long
init_checkpoint_modules=['backbone'],
......
......@@ -79,26 +79,27 @@ class PanopticSegmentationGenerator(tf.keras.layers.Layer):
pasted_mask = tf.ones(
self._output_size + [1], dtype=mask.dtype) * self._void_class_label
ymin = box[0]
xmin = box[1]
ymin = tf.clip_by_value(box[0], 0, self._output_size[0])
xmin = tf.clip_by_value(box[1], 0, self._output_size[1])
ymax = tf.clip_by_value(box[2] + 1, 0, self._output_size[0])
xmax = tf.clip_by_value(box[3] + 1, 0, self._output_size[1])
box_height = ymax - ymin
box_width = xmax - xmin
# resize mask to match the shape of the instance bounding box
resized_mask = tf.image.resize(
mask,
size=(box_height, box_width),
method='nearest')
# paste resized mask on a blank mask that matches image shape
pasted_mask = tf.raw_ops.TensorStridedSliceUpdate(
input=pasted_mask,
begin=[ymin, xmin],
end=[ymax, xmax],
strides=[1, 1],
value=resized_mask)
if not (box_height == 0 or box_width == 0):
# resize mask to match the shape of the instance bounding box
resized_mask = tf.image.resize(
mask,
size=(box_height, box_width),
method='nearest')
# paste resized mask on a blank mask that matches image shape
pasted_mask = tf.raw_ops.TensorStridedSliceUpdate(
input=pasted_mask,
begin=[ymin, xmin],
end=[ymax, xmax],
strides=[1, 1],
value=resized_mask)
return pasted_mask
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment