Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
228ee2ad
Commit
228ee2ad
authored
Oct 18, 2021
by
Vishnu Banna
Browse files
rm lrge fntune
parent
fe9964a2
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
15 additions
and
111 deletions
+15
-111
official/vision/beta/projects/yolo/configs/experiments/scaled-yolo/detection-finetune/yolo_l_p5_896_tpu.yaml
...nts/scaled-yolo/detection-finetune/yolo_l_p5_896_tpu.yaml
+5
-0
official/vision/beta/projects/yolo/configs/experiments/scaled-yolo/detection-finetune/yolo_l_p6_1280_tpu.yaml
...ts/scaled-yolo/detection-finetune/yolo_l_p6_1280_tpu.yaml
+5
-0
official/vision/beta/projects/yolo/configs/experiments/scaled-yolo/detection-finetune/yolo_l_p7_1536_tpu.yaml
...ts/scaled-yolo/detection-finetune/yolo_l_p7_1536_tpu.yaml
+5
-0
official/vision/beta/projects/yolo/configs/yolo.py
official/vision/beta/projects/yolo/configs/yolo.py
+0
-111
No files found.
official/vision/beta/projects/yolo/configs/experiments/scaled-yolo/detection-finetune/yolo_l_p5_896_tpu.yaml
View file @
228ee2ad
...
...
@@ -74,3 +74,8 @@ task:
area_thresh
:
0.1
validation_data
:
input_path
:
'
/readahead/200M/placer/prod/home/tensorflow-performance-data/datasets/coco/val*'
trainer
:
train_steps
:
831600
# epoch 300 to 450
learning_rate
:
cosine
:
decay_steps
:
831600
# epoch 300 to 450
\ No newline at end of file
official/vision/beta/projects/yolo/configs/experiments/scaled-yolo/detection-finetune/yolo_l_p6_1280_tpu.yaml
View file @
228ee2ad
...
...
@@ -76,3 +76,8 @@ task:
area_thresh
:
0.1
validation_data
:
input_path
:
'
/readahead/200M/placer/prod/home/tensorflow-performance-data/datasets/coco/val*'
trainer
:
train_steps
:
831600
# epoch 300 to 450
learning_rate
:
cosine
:
decay_steps
:
831600
# epoch 300 to 450
\ No newline at end of file
official/vision/beta/projects/yolo/configs/experiments/scaled-yolo/detection-finetune/yolo_l_p7_1536_tpu.yaml
View file @
228ee2ad
...
...
@@ -78,3 +78,8 @@ task:
area_thresh
:
0.1
validation_data
:
input_path
:
'
/readahead/200M/placer/prod/home/tensorflow-performance-data/datasets/coco/val*'
trainer
:
train_steps
:
831600
# epoch 300 to 450
learning_rate
:
cosine
:
decay_steps
:
831600
# epoch 300 to 450
\ No newline at end of file
official/vision/beta/projects/yolo/configs/yolo.py
View file @
228ee2ad
...
...
@@ -619,115 +619,4 @@ def large_yolo() -> cfg.ExperimentConfig:
'task.validation_data.is_training != None'
])
return
config
@
exp_factory
.
register_config_factory
(
'large_yolo_finetune'
)
def
large_yolo_finetune
()
->
cfg
.
ExperimentConfig
:
"""COCO object detection with YOLOv4-csp and v4."""
train_batch_size
=
64
eval_batch_size
=
8
train_epochs
=
300
fine_tune_epochs
=
450
warmup_epochs
=
3
validation_interval
=
5
steps_per_epoch
=
COCO_TRAIN_EXAMPLES
//
train_batch_size
max_num_instances
=
300
config
=
cfg
.
ExperimentConfig
(
runtime
=
cfg
.
RuntimeConfig
(
mixed_precision_dtype
=
'bfloat16'
),
task
=
YoloTask
(
smart_bias_lr
=
0.1
,
init_checkpoint_modules
=
''
,
annotation_file
=
None
,
weight_decay
=
0.0
,
model
=
Yolo
(
darknet_based_model
=
False
,
norm_activation
=
common
.
NormActivation
(
activation
=
'mish'
,
use_sync_bn
=
True
,
norm_epsilon
=
0.0001
,
norm_momentum
=
0.97
),
head
=
YoloHead
(
smart_bias
=
True
),
loss
=
YoloLoss
(
use_scaled_loss
=
True
)),
train_data
=
DataConfig
(
input_path
=
os
.
path
.
join
(
COCO_INPUT_PATH_BASE
,
'train*'
),
is_training
=
True
,
global_batch_size
=
train_batch_size
,
dtype
=
'float32'
,
parser
=
Parser
(
aug_rand_saturation
=
0.7
,
aug_rand_brightness
=
0.4
,
aug_rand_hue
=
0.015
,
letter_box
=
True
,
use_tie_breaker
=
True
,
best_match_only
=
True
,
anchor_thresh
=
4.0
,
random_pad
=
False
,
area_thresh
=
0.1
,
max_num_instances
=
max_num_instances
,
mosaic
=
Mosaic
(
mosaic_crop_mode
=
'scale'
,
mosaic_frequency
=
1.0
,
mixup_frequency
=
0.2
,
))),
validation_data
=
DataConfig
(
input_path
=
os
.
path
.
join
(
COCO_INPUT_PATH_BASE
,
'val*'
),
is_training
=
False
,
global_batch_size
=
eval_batch_size
,
drop_remainder
=
True
,
dtype
=
'float32'
,
parser
=
Parser
(
letter_box
=
True
,
use_tie_breaker
=
True
,
best_match_only
=
True
,
anchor_thresh
=
4.0
,
area_thresh
=
0.1
,
max_num_instances
=
max_num_instances
,
))),
trainer
=
cfg
.
TrainerConfig
(
train_steps
=
fine_tune_epochs
*
steps_per_epoch
,
validation_steps
=
COCO_VAL_EXAMPLES
//
eval_batch_size
,
validation_interval
=
validation_interval
*
steps_per_epoch
,
steps_per_loop
=
steps_per_epoch
,
summary_interval
=
steps_per_epoch
,
checkpoint_interval
=
steps_per_epoch
,
optimizer_config
=
optimization
.
OptimizationConfig
({
'ema'
:
{
'average_decay'
:
0.9999
,
'trainable_weights_only'
:
False
,
'dynamic_decay'
:
True
,
},
'optimizer'
:
{
'type'
:
'sgd_torch'
,
'sgd_torch'
:
{
'momentum'
:
0.937
,
'momentum_start'
:
0.9
,
'nesterov'
:
True
,
'warmup_steps'
:
steps_per_epoch
*
warmup_epochs
,
'weight_decay'
:
0.0005
*
train_batch_size
/
64.0
,
}
},
'learning_rate'
:
{
'type'
:
'cosine'
,
'cosine'
:
{
'initial_learning_rate'
:
0.01
,
'alpha'
:
0.2
,
'decay_steps'
:
fine_tune_epochs
*
steps_per_epoch
,
}
},
'warmup'
:
{
'type'
:
'linear'
,
'linear'
:
{
'warmup_steps'
:
steps_per_epoch
*
warmup_epochs
,
'warmup_learning_rate'
:
0
}
}
})),
restrictions
=
[
'task.train_data.is_training != None'
,
'task.validation_data.is_training != None'
])
return
config
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment