Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
227e58b7
"magic_pdf/git@developer.sourcefind.cn:wangsen/mineru.git" did not exist on "f4ffdfe8ef9c7242d4c2e256d76f1aeef0ccc823"
Commit
227e58b7
authored
Aug 01, 2020
by
xinliupitt
Browse files
remove mixed precision
parent
237a5435
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
0 additions
and
23 deletions
+0
-23
official/nlp/modeling/layers/on_device_embedding_test.py
official/nlp/modeling/layers/on_device_embedding_test.py
+0
-23
No files found.
official/nlp/modeling/layers/on_device_embedding_test.py
View file @
227e58b7
...
@@ -214,28 +214,5 @@ class OnDeviceEmbeddingTest(keras_parameterized.TestCase):
...
@@ -214,28 +214,5 @@ class OnDeviceEmbeddingTest(keras_parameterized.TestCase):
output
=
model
.
predict
(
input_data
)
output
=
model
.
predict
(
input_data
)
self
.
assertEqual
(
tf
.
float32
,
output
.
dtype
)
self
.
assertEqual
(
tf
.
float32
,
output
.
dtype
)
def
test_use_scale_layer_invocation_with_mixed_precision
(
self
):
vocab_size
=
31
embedding_width
=
27
policy
=
tf
.
keras
.
mixed_precision
.
experimental
.
Policy
(
"mixed_float16"
)
test_layer
=
on_device_embedding
.
OnDeviceEmbedding
(
vocab_size
=
vocab_size
,
embedding_width
=
embedding_width
,
dtype
=
policy
,
use_scale
=
True
)
# Create a 2-dimensional input (the first dimension is implicit).
sequence_length
=
23
input_tensor
=
tf
.
keras
.
Input
(
shape
=
(
sequence_length
),
dtype
=
tf
.
int32
)
output_tensor
=
test_layer
(
input_tensor
)
# Create a model from the test layer.
model
=
tf
.
keras
.
Model
(
input_tensor
,
output_tensor
)
# Invoke the model on test data. We can't validate the output data itself
# (the NN is too complex) but this will rule out structural runtime errors.
batch_size
=
3
input_data
=
np
.
random
.
randint
(
vocab_size
,
size
=
(
batch_size
,
sequence_length
))
output
=
model
.
predict
(
input_data
)
self
.
assertEqual
(
tf
.
float16
,
output
.
dtype
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
tf
.
test
.
main
()
tf
.
test
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment