Unverified Commit 220772b5 authored by Neal Wu's avatar Neal Wu Committed by GitHub
Browse files

Merge pull request #2863 from joel-shor/master

Project import generated by Copybara.
parents 51228caa a137432c
...@@ -25,7 +25,8 @@ Maintainers of TFGAN: ...@@ -25,7 +25,8 @@ Maintainers of TFGAN:
1. [Image compression (coming soon)](#compression) 1. [Image compression (coming soon)](#compression)
## MNIST {#mnist} ## MNIST
<a id='mnist'></a>
We train a simple generator to produce [MNIST digits](http://yann.lecun.com/exdb/mnist/). We train a simple generator to produce [MNIST digits](http://yann.lecun.com/exdb/mnist/).
The unconditional case maps noise to MNIST digits. The conditional case maps The unconditional case maps noise to MNIST digits. The conditional case maps
...@@ -36,22 +37,24 @@ network architectures are defined [here](https://github.com/tensorflow/models/tr ...@@ -36,22 +37,24 @@ network architectures are defined [here](https://github.com/tensorflow/models/tr
We use a classifier trained on MNIST digit classification for evaluation. We use a classifier trained on MNIST digit classification for evaluation.
### Unconditional MNIST ### Unconditional MNIST
![Unconditional GAN](g3doc/mnist_unconditional_gan.png "unconditional GAN") <img src="g3doc/mnist_unconditional_gan.png" title="Unconditional GAN" width="330" />
### Conditional MNIST ### Conditional MNIST
![Conditional GAN](g3doc/mnist_conditional_gan.png "conditional GAN") <img src="g3doc/mnist_conditional_gan.png" title="Conditional GAN" width="330" />
### InfoGAN MNIST ### InfoGAN MNIST
![InfoGAN](g3doc/mnist_infogan.png "InfoGAN") <img src="g3doc/mnist_infogan.png" title="InfoGAN" width="330" />
## MNIST with GANEstimator {#mnist_estimator} ## MNIST with GANEstimator
<a id='mnist_estimator'></a>
This setup is exactly the same as in the [unconditional MNIST example](#mnist), but This setup is exactly the same as in the [unconditional MNIST example](#mnist), but
uses the `tf.Learn` `GANEstimator`. uses the `tf.Learn` `GANEstimator`.
![Unconditional GAN](g3doc/mnist_estimator_unconditional_gan.png "unconditional GAN") <img src="g3doc/mnist_estimator_unconditional_gan.png" title="Unconditional GAN" width="330" />
## CIFAR10 {#cifar10} ## CIFAR10
<a id='cifar10'></a>
We train a [DCGAN generator](https://arxiv.org/abs/1511.06434) to produce [CIFAR10 images](https://www.cs.toronto.edu/~kriz/cifar.html). We train a [DCGAN generator](https://arxiv.org/abs/1511.06434) to produce [CIFAR10 images](https://www.cs.toronto.edu/~kriz/cifar.html).
The unconditional case maps noise to CIFAR10 images. The conditional case maps The unconditional case maps noise to CIFAR10 images. The conditional case maps
...@@ -61,12 +64,13 @@ network architectures are defined [here](https://github.com/tensorflow/models/tr ...@@ -61,12 +64,13 @@ network architectures are defined [here](https://github.com/tensorflow/models/tr
We use the [Inception Score](https://arxiv.org/abs/1606.03498) to evaluate the images. We use the [Inception Score](https://arxiv.org/abs/1606.03498) to evaluate the images.
### Unconditional CIFAR10 ### Unconditional CIFAR10
![Unconditional GAN](g3doc/cifar_unconditional_gan.png "unconditional GAN") <img src="g3doc/cifar_unconditional_gan.png" title="Unconditional GAN" width="330" />
### Conditional CIFAR10 ### Conditional CIFAR10
![Unconditional GAN](g3doc/cifar_conditional_gan.png "unconditional GAN"){width="330"} <img src="g3doc/cifar_conditional_gan.png" title="Conditional GAN" width="330" />
## Image compression {#compression} ## Image compression
<a id='compression'></a>
In neural image compression, we attempt to reduce an image to a smaller representation In neural image compression, we attempt to reduce an image to a smaller representation
such that we can recreate the original image as closely as possible. See [`Full Resolution Image Compression with Recurrent Neural Networks`](https://arxiv.org/abs/1608.05148) for more details on using neural networks such that we can recreate the original image as closely as possible. See [`Full Resolution Image Compression with Recurrent Neural Networks`](https://arxiv.org/abs/1608.05148) for more details on using neural networks
...@@ -93,12 +97,10 @@ Some other notes on the problem: ...@@ -93,12 +97,10 @@ Some other notes on the problem:
### Results ### Results
#### No adversarial loss #### No adversarial loss
<img src="g3doc/compression_wf0.png" title="No adversarial loss" width="500" />
![compresson_no_adversarial](g3doc/compression_wf0.png "no adversarial loss")
#### Adversarial loss #### Adversarial loss
<img src="g3doc/compression_wf10000.png" title="With adversarial loss" width="500" />
![compresson_no_adversarial](g3doc/compression_wf10000.png "with adversarial loss")
### Architectures ### Architectures
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment