Commit 1df58b60 authored by Abdullah Rashwan's avatar Abdullah Rashwan Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 389665560
parent 3576cb4b
...@@ -17,30 +17,31 @@ repository. ...@@ -17,30 +17,31 @@ repository.
## Description ## Description
Yolo v1 the original implementation was released in 2015 providing a ground YOLO v1 the original implementation was released in 2015 providing a
breaking algorithm that would quickly process images, and locate objects in a ground breaking algorithm that would quickly process images and locate objects
single pass through the detector. The original implementation based used a in a single pass through the detector. The original implementation used a
backbone derived from state of the art object classifier of the time, like backbone derived from state of the art object classifiers of the time, like
[GoogLeNet](https://arxiv.org/abs/1409.4842) and [GoogLeNet](https://arxiv.org/abs/1409.4842) and
[VGG](https://arxiv.org/abs/1409.1556). More attention was given to the novel [VGG](https://arxiv.org/abs/1409.1556). More attention was given to the novel
Yolo Detection head that allowed for Object Detection with a single pass of an YOLO Detection head that allowed for Object Detection with a single pass of an
image. Though limited, the network could predict up to 90 bounding boxes per image. Though limited, the network could predict up to 90 bounding boxes per
image, and was tested for about 80 classes per box. Also, the model could only image, and was tested for about 80 classes per box. Also, the model can only
make prediction at one scale. These attributes caused yolo v1 to be more make predictions at one scale. These attributes caused YOLO v1 to be more
limited, and less versatile, so as the year passed, the Developers continued to limited and less versatile, so as the year passed, the Developers continued to
update and develop this model. update and develop this model.
Yolo v3 and v4 serve as the most up to date and capable versions of the Yolo YOLO v3 and v4 serve as the most up to date and capable versions of the YOLO
network group. These model uses a custom backbone called Darknet53 that uses network group. This model uses a custom backbone called Darknet53 that uses
knowledge gained from the ResNet paper to improve its predictions. The new knowledge gained from the ResNet paper to improve its predictions. The new
backbone also allows for objects to be detected at multiple scales. As for the backbone also allows for objects to be detected at multiple scales. As for the
new detection head, the model now predicts the bounding boxes using a set of new detection head, the model now predicts the bounding boxes using a set of
anchor box priors (Anchor Boxes) as suggestions. The multiscale predictions in anchor box priors (Anchor Boxes) as suggestions. Multiscale predictions in
combination with the Anchor boxes allows for the network to make up to 1000 combination with Anchor boxes allow for the network to make up to 1000 object
object predictions on a single image. Finally, the new loss function forces the predictions on a single image. Finally, the new loss function forces the network
network to make better prediction by using Intersection Over Union (IOU) to to make better predictions by using Intersection Over Union (IOU) to inform the
inform the model's confidence rather than relying on the mean squared error for model's confidence rather than relying on the mean squared error for the entire
the entire output. output.
## Authors ## Authors
...@@ -59,9 +60,9 @@ the entire output. ...@@ -59,9 +60,9 @@ the entire output.
## Our Goal ## Our Goal
Our goal with this model conversion is to provide implementations of the Our goal with this model conversion is to provide implementation of the Backbone
Backbone and Yolo Head. We have built the model in such a way that the Yolo and YOLO Head. We have built the model in such a way that the YOLO head could be
head could be connected to a new, more powerful backbone if a person chose to. connected to a new, more powerful backbone if a person chose to.
## Models in the library ## Models in the library
...@@ -79,3 +80,5 @@ head could be connected to a new, more powerful backbone if a person chose to. ...@@ -79,3 +80,5 @@ head could be connected to a new, more powerful backbone if a person chose to.
[![Python 3.8](https://img.shields.io/badge/Python-3.8-3776AB)](https://www.python.org/downloads/release/python-380/) [![Python 3.8](https://img.shields.io/badge/Python-3.8-3776AB)](https://www.python.org/downloads/release/python-380/)
DISCLAIMER: this YOLO implementation is still under development. No support
will be provided during the development phase.
...@@ -30,6 +30,8 @@ class Darknet(hyperparams.Config): ...@@ -30,6 +30,8 @@ class Darknet(hyperparams.Config):
width_scale: float = 1.0 width_scale: float = 1.0
depth_scale: float = 1.0 depth_scale: float = 1.0
dilate: bool = False dilate: bool = False
min_level: int = 3
max_level: int = 5
@dataclasses.dataclass @dataclasses.dataclass
......
...@@ -15,9 +15,8 @@ ...@@ -15,9 +15,8 @@
# Lint as: python3 # Lint as: python3
"""Image classification with darknet configs.""" """Image classification with darknet configs."""
from typing import List, Optional
import dataclasses import dataclasses
from typing import List, Optional
from official.core import config_definitions as cfg from official.core import config_definitions as cfg
from official.core import exp_factory from official.core import exp_factory
...@@ -35,7 +34,7 @@ class ImageClassificationModel(hyperparams.Config): ...@@ -35,7 +34,7 @@ class ImageClassificationModel(hyperparams.Config):
type='darknet', darknet=backbones.Darknet()) type='darknet', darknet=backbones.Darknet())
dropout_rate: float = 0.0 dropout_rate: float = 0.0
norm_activation: common.NormActivation = common.NormActivation() norm_activation: common.NormActivation = common.NormActivation()
# Adds a BatchNormalization layer pre-GlobalAveragePooling in classification # Adds a Batch Normalization layer pre-GlobalAveragePooling in classification.
add_head_batch_norm: bool = False add_head_batch_norm: bool = False
......
...@@ -67,7 +67,7 @@ class Parser(parser.Parser): ...@@ -67,7 +67,7 @@ class Parser(parser.Parser):
max_level: `int` number of maximum level of the output feature pyramid. max_level: `int` number of maximum level of the output feature pyramid.
masks: a `Tensor`, `List` or `numpy.ndarray` for anchor masks. masks: a `Tensor`, `List` or `numpy.ndarray` for anchor masks.
max_process_size: an `int` for maximum image width and height. max_process_size: an `int` for maximum image width and height.
min_process_size: an `int` for minimum image width and height , min_process_size: an `int` for minimum image width and height.
max_num_instances: an `int` number of maximum number of instances in an max_num_instances: an `int` number of maximum number of instances in an
image. image.
random_flip: a `bool` if True, augment training with random horizontal random_flip: a `bool` if True, augment training with random horizontal
......
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Yolo models."""
import tensorflow as tf
# Static base Yolo Models that do not require configuration
# similar to a backbone model id.
# this is done greatly simplify the model config
# the structure is as follows. model version, {v3, v4, v#, ... etc}
# the model config type {regular, tiny, small, large, ... etc}
YOLO_MODELS = {
"v4":
dict(
regular=dict(
embed_spp=False,
use_fpn=True,
max_level_process_len=None,
path_process_len=6),
tiny=dict(
embed_spp=False,
use_fpn=False,
max_level_process_len=2,
path_process_len=1),
csp=dict(
embed_spp=False,
use_fpn=True,
max_level_process_len=None,
csp_stack=5,
fpn_depth=5,
path_process_len=6),
csp_large=dict(
embed_spp=False,
use_fpn=True,
max_level_process_len=None,
csp_stack=7,
fpn_depth=7,
path_process_len=8,
fpn_filter_scale=2),
),
"v3":
dict(
regular=dict(
embed_spp=False,
use_fpn=False,
max_level_process_len=None,
path_process_len=6),
tiny=dict(
embed_spp=False,
use_fpn=False,
max_level_process_len=2,
path_process_len=1),
spp=dict(
embed_spp=True,
use_fpn=False,
max_level_process_len=2,
path_process_len=1),
),
}
class Yolo(tf.keras.Model):
"""The YOLO model class."""
def __init__(self,
backbone=None,
decoder=None,
head=None,
detection_generator=None,
**kwargs):
"""Detection initialization function.
Args:
backbone: `tf.keras.Model`, a backbone network.
decoder: `tf.keras.Model`, a decoder network.
head: `YoloHead`, the YOLO head.
detection_generator: `tf.keras.Model`, the detection generator.
**kwargs: keyword arguments to be passed.
"""
super().__init__(**kwargs)
self._config_dict = {
"backbone": backbone,
"decoder": decoder,
"head": head,
"detection_generator": detection_generator
}
# model components
self._backbone = backbone
self._decoder = decoder
self._head = head
self._detection_generator = detection_generator
def call(self, inputs, training=False):
maps = self._backbone(inputs)
decoded_maps = self._decoder(maps)
raw_predictions = self._head(decoded_maps)
if training:
return {"raw_output": raw_predictions}
else:
# Post-processing.
predictions = self._detection_generator(raw_predictions)
predictions.update({"raw_output": raw_predictions})
return predictions
@property
def backbone(self):
return self._backbone
@property
def decoder(self):
return self._decoder
@property
def head(self):
return self._head
@property
def detection_generator(self):
return self._detection_generator
def get_config(self):
return self._config_dict
@classmethod
def from_config(cls, config):
return cls(**config)
...@@ -12,28 +12,21 @@ ...@@ -12,28 +12,21 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""Bounding box utils.""" """Yolo box ops."""
import math import math
import tensorflow as tf import tensorflow as tf
from official.vision.beta.projects.yolo.ops import math_ops
def yxyx_to_xcycwh(box: tf.Tensor): def yxyx_to_xcycwh(box: tf.Tensor):
"""Converts boxes from ymin, xmin, ymax, xmax. """Converts boxes from yxyx to x_center, y_center, width, height.
to x_center, y_center, width, height.
Args: Args:
box: `Tensor` whose shape is [..., 4] and represents the coordinates box: any `Tensor` whose last dimension is 4 representing the coordinates of
of boxes in ymin, xmin, ymax, xmax. boxes in ymin, xmin, ymax, xmax.
Returns: Returns:
`Tensor` whose shape is [..., 4] and contains the new format. box: a `Tensor` whose shape is the same as `box` in new format.
Raises:
ValueError: If the last dimension of box is not 4 or if box's dtype isn't
a floating point type.
""" """
with tf.name_scope('yxyx_to_xcycwh'): with tf.name_scope('yxyx_to_xcycwh'):
ymin, xmin, ymax, xmax = tf.split(box, 4, axis=-1) ymin, xmin, ymax, xmax = tf.split(box, 4, axis=-1)
...@@ -45,23 +38,9 @@ def yxyx_to_xcycwh(box: tf.Tensor): ...@@ -45,23 +38,9 @@ def yxyx_to_xcycwh(box: tf.Tensor):
return box return box
def xcycwh_to_yxyx(box: tf.Tensor, split_min_max: bool = False): @tf.custom_gradient
"""Converts boxes from x_center, y_center, width, height. def _xcycwh_to_yxyx(box: tf.Tensor, scale):
"""Private function to allow custom gradients with defaults."""
to ymin, xmin, ymax, xmax.
Args:
box: a `Tensor` whose shape is [..., 4] and represents the coordinates
of boxes in x_center, y_center, width, height.
split_min_max: bool, whether or not to split x, y min and max values.
Returns:
box: a `Tensor` whose shape is [..., 4] and contains the new format.
Raises:
ValueError: If the last dimension of box is not 4 or if box's dtype isn't
a floating point type.
"""
with tf.name_scope('xcycwh_to_yxyx'): with tf.name_scope('xcycwh_to_yxyx'):
xy, wh = tf.split(box, 2, axis=-1) xy, wh = tf.split(box, 2, axis=-1)
xy_min = xy - wh / 2 xy_min = xy - wh / 2
...@@ -69,229 +48,297 @@ def xcycwh_to_yxyx(box: tf.Tensor, split_min_max: bool = False): ...@@ -69,229 +48,297 @@ def xcycwh_to_yxyx(box: tf.Tensor, split_min_max: bool = False):
x_min, y_min = tf.split(xy_min, 2, axis=-1) x_min, y_min = tf.split(xy_min, 2, axis=-1)
x_max, y_max = tf.split(xy_max, 2, axis=-1) x_max, y_max = tf.split(xy_max, 2, axis=-1)
box = tf.concat([y_min, x_min, y_max, x_max], axis=-1) box = tf.concat([y_min, x_min, y_max, x_max], axis=-1)
if split_min_max:
box = tf.split(box, 2, axis=-1)
return box
def delta(dbox):
# y_min = top, x_min = left, y_max = bottom, x_max = right
dt, dl, db, dr = tf.split(dbox, 4, axis=-1)
dx = dl + dr
dy = dt + db
dw = (dr - dl) / scale
dh = (db - dt) / scale
dbox = tf.concat([dx, dy, dw, dh], axis=-1)
return dbox, 0.0
def xcycwh_to_xyxy(box: tf.Tensor, split_min_max: bool = False): return box, delta
"""Converts boxes from x_center, y_center, width, height to.
xmin, ymin, xmax, ymax.
def xcycwh_to_yxyx(box: tf.Tensor, darknet=False):
"""Converts boxes from x_center, y_center, width, height to yxyx format.
Args: Args:
box: box: a `Tensor` whose shape is [..., 4] and represents the box: any `Tensor` whose last dimension is 4 representing the coordinates of
coordinates of boxes in x_center, y_center, width, height. boxes in x_center, y_center, width, height.
split_min_max: bool, whether or not to split x, y min and max values. darknet: `bool`, if True a scale of 1.0 is used.
Returns: Returns:
box: a `Tensor` whose shape is [..., 4] and contains the new format. box: a `Tensor` whose shape is the same as `box` in new format.
Raises:
ValueError: If the last dimension of box is not 4 or if box's dtype isn't
a floating point type.
""" """
with tf.name_scope('xcycwh_to_yxyx'): if darknet:
xy, wh = tf.split(box, 2, axis=-1) scale = 1.0
xy_min = xy - wh / 2 else:
xy_max = xy + wh / 2 scale = 2.0
box = (xy_min, xy_max) box = _xcycwh_to_yxyx(box, scale)
if not split_min_max:
box = tf.concat(box, axis=-1)
return box return box
def center_distance(center_1: tf.Tensor, center_2: tf.Tensor): # IOU
"""Calculates the squared distance between two points. def intersect_and_union(box1, box2, yxyx=False):
"""Calculates the intersection and union between box1 and box2.
Args:
box1: any `Tensor` whose last dimension is 4 representing the coordinates of
boxes.
box2: any `Tensor` whose last dimension is 4 representing the coordinates of
boxes.
yxyx: a `bool` indicating whether the input box is of the format x_center
y_center, width, height or y_min, x_min, y_max, x_max.
Returns:
intersection: a `Tensor` who represents the intersection.
union: a `Tensor` who represents the union.
"""
if not yxyx:
box1 = xcycwh_to_yxyx(box1)
box2 = xcycwh_to_yxyx(box2)
b1mi, b1ma = tf.split(box1, 2, axis=-1)
b2mi, b2ma = tf.split(box2, 2, axis=-1)
intersect_mins = tf.math.maximum(b1mi, b2mi)
intersect_maxes = tf.math.minimum(b1ma, b2ma)
intersect_wh = tf.math.maximum(intersect_maxes - intersect_mins, 0.0)
intersection = tf.reduce_prod(intersect_wh, axis=-1)
box1_area = tf.reduce_prod(b1ma - b1mi, axis=-1)
box2_area = tf.reduce_prod(b2ma - b2mi, axis=-1)
union = box1_area + box2_area - intersection
return intersection, union
This function is mathematically equivalent to the following code, but has
smaller rounding errors.
tf.norm(center_1 - center_2, axis=-1)**2 def smallest_encompassing_box(box1, box2, yxyx=False):
"""Calculates the smallest box that encompasses box1 and box2.
Args: Args:
center_1: a `Tensor` whose shape is [..., 2] and represents a point. box1: any `Tensor` whose last dimension is 4 representing the coordinates of
center_2: a `Tensor` whose shape is [..., 2] and represents a point. boxes.
box2: any `Tensor` whose last dimension is 4 representing the coordinates of
boxes.
yxyx: a `bool` indicating whether the input box is of the format x_center
y_center, width, height or y_min, x_min, y_max, x_max.
Returns: Returns:
dist: a `Tensor` whose shape is [...] and value represents the squared box_c: a `Tensor` whose last dimension is 4 representing the coordinates of
distance between center_1 and center_2. boxes, the return format is y_min, x_min, y_max, x_max if yxyx is set to
to True. In other words it will match the input format.
Raises:
ValueError: If the last dimension of either center_1 or center_2 is not 2.
""" """
with tf.name_scope('center_distance'): if not yxyx:
dist = (center_1[..., 0] - center_2[..., 0])**2 + (center_1[..., 1] - box1 = xcycwh_to_yxyx(box1)
center_2[..., 1])**2 box2 = xcycwh_to_yxyx(box2)
return dist
b1mi, b1ma = tf.split(box1, 2, axis=-1)
b2mi, b2ma = tf.split(box2, 2, axis=-1)
bcmi = tf.math.minimum(b1mi, b2mi)
bcma = tf.math.maximum(b1ma, b2ma)
bca = tf.reduce_prod(bcma - bcmi, keepdims=True, axis=-1)
box_c = tf.concat([bcmi, bcma], axis=-1)
if not yxyx:
box_c = yxyx_to_xcycwh(box_c)
box_c = tf.where(bca == 0.0, tf.zeros_like(box_c), box_c)
return box_c
def compute_iou(box1, box2, yxyx=False): def compute_iou(box1, box2, yxyx=False):
"""Calculates the intersection of union between box1 and box2. """Calculates the intersection over union between box1 and box2.
Args: Args:
box1: a `Tensor` whose shape is [..., 4] and represents the coordinates of box1: any `Tensor` whose last dimension is 4 representing the coordinates of
boxes in x_center, y_center, width, height. boxes.
box2: a `Tensor` whose shape is [..., 4] and represents the coordinates of box2: any `Tensor` whose last dimension is 4 representing the coordinates of
boxes in x_center, y_center, width, height. boxes.
yxyx: `bool`, whether or not box1, and box2 are in yxyx format. yxyx: a `bool` indicating whether the input box is of the format x_center
y_center, width, height or y_min, x_min, y_max, x_max.
Returns: Returns:
iou: a `Tensor` whose shape is [...] and value represents the intersection iou: a `Tensor` who represents the intersection over union.
over union.
Raises:
ValueError: If the last dimension of either box1 or box2 is not 4.
""" """
# Get box corners # get box corners
with tf.name_scope('iou'): with tf.name_scope('iou'):
if not yxyx: intersection, union = intersect_and_union(box1, box2, yxyx=yxyx)
box1 = xcycwh_to_yxyx(box1) iou = math_ops.divide_no_nan(intersection, union)
box2 = xcycwh_to_yxyx(box2) iou = math_ops.rm_nan_inf(iou, val=0.0)
b1mi, b1ma = tf.split(box1, 2, axis=-1)
b2mi, b2ma = tf.split(box2, 2, axis=-1)
intersect_mins = tf.math.maximum(b1mi, b2mi)
intersect_maxes = tf.math.minimum(b1ma, b2ma)
intersect_wh = tf.math.maximum(intersect_maxes - intersect_mins,
tf.zeros_like(intersect_mins))
intersection = tf.reduce_prod(
intersect_wh, axis=-1) # intersect_wh[..., 0] * intersect_wh[..., 1]
box1_area = tf.math.abs(tf.reduce_prod(b1ma - b1mi, axis=-1))
box2_area = tf.math.abs(tf.reduce_prod(b2ma - b2mi, axis=-1))
union = box1_area + box2_area - intersection
iou = intersection / (union + 1e-7)
iou = tf.clip_by_value(iou, clip_value_min=0.0, clip_value_max=1.0)
return iou return iou
def compute_giou(box1, box2): def compute_giou(box1, box2, yxyx=False, darknet=False):
"""Calculates the generalized intersection of union between box1 and box2. """Calculates the General intersection over union between box1 and box2.
Args: Args:
box1: a `Tensor` whose shape is [..., 4] and represents the coordinates of box1: any `Tensor` whose last dimension is 4 representing the coordinates of
boxes in x_center, y_center, width, height. boxes.
box2: a `Tensor` whose shape is [..., 4] and represents the coordinates of box2: any `Tensor` whose last dimension is 4 representing the coordinates of
boxes in x_center, y_center, width, height. boxes.
yxyx: a `bool` indicating whether the input box is of the format x_center
y_center, width, height or y_min, x_min, y_max, x_max.
darknet: a `bool` indicating whether the calling function is the YOLO
darknet loss.
Returns: Returns:
iou: a `Tensor` whose shape is [...] and value represents the generalized giou: a `Tensor` who represents the General intersection over union.
intersection over union.
Raises:
ValueError: If the last dimension of either box1 or box2 is not 4.
""" """
with tf.name_scope('giou'): with tf.name_scope('giou'):
# get box corners # get IOU
box1 = xcycwh_to_yxyx(box1) if not yxyx:
box2 = xcycwh_to_yxyx(box2) box1 = xcycwh_to_yxyx(box1, darknet=darknet)
box2 = xcycwh_to_yxyx(box2, darknet=darknet)
# compute IOU yxyx = True
intersect_mins = tf.math.maximum(box1[..., 0:2], box2[..., 0:2])
intersect_maxes = tf.math.minimum(box1[..., 2:4], box2[..., 2:4])
intersect_wh = tf.math.maximum(intersect_maxes - intersect_mins,
tf.zeros_like(intersect_mins))
intersection = intersect_wh[..., 0] * intersect_wh[..., 1]
box1_area = tf.math.abs(
tf.reduce_prod(box1[..., 2:4] - box1[..., 0:2], axis=-1))
box2_area = tf.math.abs(
tf.reduce_prod(box2[..., 2:4] - box2[..., 0:2], axis=-1))
union = box1_area + box2_area - intersection
iou = tf.math.divide_no_nan(intersection, union) intersection, union = intersect_and_union(box1, box2, yxyx=yxyx)
iou = tf.clip_by_value(iou, clip_value_min=0.0, clip_value_max=1.0) iou = math_ops.divide_no_nan(intersection, union)
iou = math_ops.rm_nan_inf(iou, val=0.0)
# find the smallest box to encompase both box1 and box2 # find the smallest box to encompase both box1 and box2
c_mins = tf.math.minimum(box1[..., 0:2], box2[..., 0:2]) boxc = smallest_encompassing_box(box1, box2, yxyx=yxyx)
c_maxes = tf.math.maximum(box1[..., 2:4], box2[..., 2:4]) if yxyx:
c = tf.math.abs(tf.reduce_prod(c_mins - c_maxes, axis=-1)) boxc = yxyx_to_xcycwh(boxc)
_, cwch = tf.split(boxc, 2, axis=-1)
c = tf.math.reduce_prod(cwch, axis=-1)
# compute giou # compute giou
giou = iou - tf.math.divide_no_nan((c - union), c) regularization = math_ops.divide_no_nan((c - union), c)
giou = iou - regularization
giou = tf.clip_by_value(giou, clip_value_min=-1.0, clip_value_max=1.0)
return iou, giou return iou, giou
def compute_diou(box1, box2): def compute_diou(box1, box2, beta=1.0, yxyx=False, darknet=False):
"""Calculates the distance intersection of union between box1 and box2. """Calculates the distance intersection over union between box1 and box2.
Args: Args:
box1: a `Tensor` whose shape is [..., 4] and represents the coordinates of box1: any `Tensor` whose last dimension is 4 representing the coordinates of
boxes in x_center, y_center, width, height. boxes.
box2: a `Tensor` whose shape is [..., 4] and represents the coordinates of box2: any `Tensor` whose last dimension is 4 representing the coordinates of
boxes in x_center, y_center, width, height. boxes.
beta: a `float` indicating the amount to scale the distance iou
regularization term.
yxyx: a `bool` indicating whether the input box is of the format x_center
y_center, width, height or y_min, x_min, y_max, x_max.
darknet: a `bool` indicating whether the calling function is the YOLO
darknet loss.
Returns: Returns:
iou: a `Tensor` whose shape is [...] and value represents the distance diou: a `Tensor` who represents the distance intersection over union.
intersection over union.
Raises:
ValueError: If the last dimension of either box1 or box2 is not 4.
""" """
with tf.name_scope('diou'): with tf.name_scope('diou'):
# compute center distance # compute center distance
dist = center_distance(box1[..., 0:2], box2[..., 0:2]) if not yxyx:
box1 = xcycwh_to_yxyx(box1, darknet=darknet)
box2 = xcycwh_to_yxyx(box2, darknet=darknet)
yxyx = True
intersection, union = intersect_and_union(box1, box2, yxyx=yxyx)
boxc = smallest_encompassing_box(box1, box2, yxyx=yxyx)
iou = math_ops.divide_no_nan(intersection, union)
iou = math_ops.rm_nan_inf(iou, val=0.0)
if yxyx:
boxc = yxyx_to_xcycwh(boxc)
box1 = yxyx_to_xcycwh(box1)
box2 = yxyx_to_xcycwh(box2)
b1xy, _ = tf.split(box1, 2, axis=-1)
b2xy, _ = tf.split(box2, 2, axis=-1)
_, bcwh = tf.split(boxc, 2, axis=-1)
center_dist = tf.reduce_sum((b1xy - b2xy)**2, axis=-1)
c_diag = tf.reduce_sum(bcwh**2, axis=-1)
regularization = math_ops.divide_no_nan(center_dist, c_diag)
diou = iou - regularization**beta
diou = tf.clip_by_value(diou, clip_value_min=-1.0, clip_value_max=1.0)
return iou, diou
# get box corners
box1 = xcycwh_to_yxyx(box1)
box2 = xcycwh_to_yxyx(box2)
# compute IOU def compute_ciou(box1, box2, yxyx=False, darknet=False):
intersect_mins = tf.math.maximum(box1[..., 0:2], box2[..., 0:2]) """Calculates the complete intersection over union between box1 and box2.
intersect_maxes = tf.math.minimum(box1[..., 2:4], box2[..., 2:4])
intersect_wh = tf.math.maximum(intersect_maxes - intersect_mins,
tf.zeros_like(intersect_mins))
intersection = intersect_wh[..., 0] * intersect_wh[..., 1]
box1_area = tf.math.abs( Args:
tf.reduce_prod(box1[..., 2:4] - box1[..., 0:2], axis=-1)) box1: any `Tensor` whose last dimension is 4 representing the coordinates of
box2_area = tf.math.abs( boxes.
tf.reduce_prod(box2[..., 2:4] - box2[..., 0:2], axis=-1)) box2: any `Tensor` whose last dimension is 4 representing the coordinates of
union = box1_area + box2_area - intersection boxes.
yxyx: a `bool` indicating whether the input box is of the format x_center
y_center, width, height or y_min, x_min, y_max, x_max.
darknet: a `bool` indicating whether the calling function is the YOLO
darknet loss.
iou = tf.math.divide_no_nan(intersection, union) Returns:
iou = tf.clip_by_value(iou, clip_value_min=0.0, clip_value_max=1.0) ciou: a `Tensor` who represents the complete intersection over union.
"""
with tf.name_scope('ciou'):
# compute DIOU and IOU
iou, diou = compute_diou(box1, box2, yxyx=yxyx, darknet=darknet)
# compute max diagnal of the smallest enclosing box if yxyx:
c_mins = tf.math.minimum(box1[..., 0:2], box2[..., 0:2]) box1 = yxyx_to_xcycwh(box1)
c_maxes = tf.math.maximum(box1[..., 2:4], box2[..., 2:4]) box2 = yxyx_to_xcycwh(box2)
diag_dist = tf.reduce_sum((c_maxes - c_mins)**2, axis=-1) _, _, b1w, b1h = tf.split(box1, 4, axis=-1)
_, _, b2w, b2h = tf.split(box1, 4, axis=-1)
regularization = tf.math.divide_no_nan(dist, diag_dist) # computer aspect ratio consistency
diou = iou + regularization terma = tf.cast(math_ops.divide_no_nan(b1w, b1h), tf.float32)
return iou, diou termb = tf.cast(math_ops.divide_no_nan(b2w, b2h), tf.float32)
arcterm = tf.square(tf.math.atan(terma) - tf.math.atan(termb))
v = tf.squeeze(4 * arcterm / (math.pi**2), axis=-1)
v = tf.cast(v, b1w.dtype)
a = tf.stop_gradient(math_ops.divide_no_nan(v, ((1 - iou) + v)))
ciou = diou - (v * a)
ciou = tf.clip_by_value(ciou, clip_value_min=-1.0, clip_value_max=1.0)
return iou, ciou
def compute_ciou(box1, box2): def aggregated_comparitive_iou(boxes1,
"""Calculates the complete intersection of union between box1 and box2. boxes2=None,
iou_type=0,
beta=0.6):
"""Calculates the IOU between two set of boxes.
Similar to bbox_overlap but far more versitile.
Args: Args:
box1: a `Tensor` whose shape is [..., 4] and represents the coordinates boxes1: a `Tensor` of shape [batch size, N, 4] representing the coordinates
of boxes in x_center, y_center, width, height. of boxes.
box2: a `Tensor` whose shape is [..., 4] and represents the coordinates of boxes2: a `Tensor` of shape [batch size, N, 4] representing the coordinates
boxes in x_center, y_center, width, height. of boxes.
iou_type: `integer` representing the iou version to use, 0 is distance iou,
1 is the general iou, 2 is the complete iou, any other number uses the
standard iou.
beta: `float` for the scaling quantity to apply to distance iou
regularization.
Returns: Returns:
iou: a `Tensor` whose shape is [...] and value represents the complete iou: a `Tensor` who represents the intersection over union in of the
intersection over union. expected/input type.
Raises:
ValueError: If the last dimension of either box1 or box2 is not 4.
""" """
with tf.name_scope('ciou'): boxes1 = tf.expand_dims(boxes1, axis=-2)
# compute DIOU and IOU
iou, diou = compute_diou(box1, box2) if boxes2 is not None:
boxes2 = tf.expand_dims(boxes2, axis=-3)
# computer aspect ratio consistency else:
arcterm = ( boxes2 = tf.transpose(boxes1, perm=(0, 2, 1, 3))
tf.math.atan(tf.math.divide_no_nan(box1[..., 2], box1[..., 3])) -
tf.math.atan(tf.math.divide_no_nan(box2[..., 2], box2[..., 3])))**2 if iou_type == 0: # diou
v = 4 * arcterm / (math.pi)**2 _, iou = compute_diou(boxes1, boxes2, beta=beta, yxyx=True)
elif iou_type == 1: # giou
# compute IOU regularization _, iou = compute_giou(boxes1, boxes2, yxyx=True)
a = tf.math.divide_no_nan(v, ((1 - iou) + v)) elif iou_type == 2: # ciou
ciou = diou + v * a _, iou = compute_ciou(boxes1, boxes2, yxyx=True)
return iou, ciou else:
iou = compute_iou(boxes1, boxes2, yxyx=True)
return iou
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""box_ops tests."""
from absl.testing import parameterized from absl.testing import parameterized
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
...@@ -27,10 +28,8 @@ class InputUtilsTest(parameterized.TestCase, tf.test.TestCase): ...@@ -27,10 +28,8 @@ class InputUtilsTest(parameterized.TestCase, tf.test.TestCase):
expected_shape = np.array([num_boxes, 4]) expected_shape = np.array([num_boxes, 4])
xywh_box = box_ops.yxyx_to_xcycwh(boxes) xywh_box = box_ops.yxyx_to_xcycwh(boxes)
yxyx_box = box_ops.xcycwh_to_yxyx(boxes) yxyx_box = box_ops.xcycwh_to_yxyx(boxes)
xyxy_box = box_ops.xcycwh_to_xyxy(boxes)
self.assertAllEqual(tf.shape(xywh_box).numpy(), expected_shape) self.assertAllEqual(tf.shape(xywh_box).numpy(), expected_shape)
self.assertAllEqual(tf.shape(yxyx_box).numpy(), expected_shape) self.assertAllEqual(tf.shape(yxyx_box).numpy(), expected_shape)
self.assertAllEqual(tf.shape(xyxy_box).numpy(), expected_shape)
@parameterized.parameters((1), (5), (7)) @parameterized.parameters((1), (5), (7))
def test_ious(self, num_boxes): def test_ious(self, num_boxes):
...@@ -51,6 +50,5 @@ class InputUtilsTest(parameterized.TestCase, tf.test.TestCase): ...@@ -51,6 +50,5 @@ class InputUtilsTest(parameterized.TestCase, tf.test.TestCase):
self.assertArrayNear(ciou, expected_iou, 0.001) self.assertArrayNear(ciou, expected_iou, 0.001)
self.assertArrayNear(diou, expected_iou, 0.001) self.assertArrayNear(diou, expected_iou, 0.001)
if __name__ == '__main__': if __name__ == '__main__':
tf.test.main() tf.test.main()
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A set of private math operations used to safely implement the YOLO loss."""
import tensorflow as tf
def rm_nan_inf(x, val=0.0):
"""Remove nan and infinity.
Args:
x: any `Tensor` of any type.
val: value to replace nan and infinity with.
Returns:
a `Tensor` with nan and infinity removed.
"""
cond = tf.math.logical_or(tf.math.is_nan(x), tf.math.is_inf(x))
val = tf.cast(val, dtype=x.dtype)
x = tf.where(cond, val, x)
return x
def rm_nan(x, val=0.0):
"""Remove nan and infinity.
Args:
x: any `Tensor` of any type.
val: value to replace nan.
Returns:
a `Tensor` with nan removed.
"""
cond = tf.math.is_nan(x)
val = tf.cast(val, dtype=x.dtype)
x = tf.where(cond, val, x)
return x
def divide_no_nan(a, b):
"""Nan safe divide operation built to allow model compilation in tflite.
Args:
a: any `Tensor` of any type.
b: any `Tensor` of any type with the same shape as tensor a.
Returns:
a `Tensor` representing a divided by b, with all nan values removed.
"""
zero = tf.cast(0.0, b.dtype)
return tf.where(b == zero, zero, a / b)
def mul_no_nan(x, y):
"""Nan safe multiply operation.
Built to allow model compilation in tflite and
to allow one tensor to mask another. Where ever x is zero the
multiplication is not computed and the value is replaced with a zero. This is
required because 0 * nan = nan. This can make computation unstable in some
cases where the intended behavior is for zero to mean ignore.
Args:
x: any `Tensor` of any type.
y: any `Tensor` of any type with the same shape as tensor x.
Returns:
a `Tensor` representing x times y, where x is used to safely mask the
tensor y.
"""
return tf.where(x == 0, tf.cast(0, x.dtype), x * y)
...@@ -194,11 +194,11 @@ def get_best_anchor(y_true, anchors, width=1, height=1): ...@@ -194,11 +194,11 @@ def get_best_anchor(y_true, anchors, width=1, height=1):
"""Gets the correct anchor that is assoiciated with each box using IOU. """Gets the correct anchor that is assoiciated with each box using IOU.
Args: Args:
y_true: tf.Tensor[] for the list of bounding boxes in the yolo format y_true: `tf.Tensor[]` for the list of bounding boxes in the yolo format.
anchors: list or tensor for the anchor boxes to be used in prediction anchors: list or tensor for the anchor boxes to be used in prediction
found via Kmeans found via Kmeans.
width: int for the image width width: int for the image width.
height: int for the image height height: int for the image height.
Returns: Returns:
tf.Tensor: y_true with the anchor associated with each ground truth tf.Tensor: y_true with the anchor associated with each ground truth
...@@ -263,7 +263,7 @@ def build_grided_gt(y_true, mask, size, dtype, use_tie_breaker): ...@@ -263,7 +263,7 @@ def build_grided_gt(y_true, mask, size, dtype, use_tie_breaker):
Args: Args:
y_true: tf.Tensor[] ground truth y_true: tf.Tensor[] ground truth
[box coords[0:4], classes_onehot[0:-1], best_fit_anchor_box] [box coords[0:4], classes_onehot[0:-1], best_fit_anchor_box].
mask: list of the anchor boxes choresponding to the output, mask: list of the anchor boxes choresponding to the output,
ex. [1, 2, 3] tells this layer to predict only the first 3 ex. [1, 2, 3] tells this layer to predict only the first 3
anchors in the total. anchors in the total.
...@@ -273,7 +273,7 @@ def build_grided_gt(y_true, mask, size, dtype, use_tie_breaker): ...@@ -273,7 +273,7 @@ def build_grided_gt(y_true, mask, size, dtype, use_tie_breaker):
use_tie_breaker: boolean value for wether or not to use the tie_breaker. use_tie_breaker: boolean value for wether or not to use the tie_breaker.
Returns: Returns:
tf.Tensor[] of shape [size, size, #of_anchors, 4, 1, num_classes] tf.Tensor[] of shape [size, size, #of_anchors, 4, 1, num_classes].
""" """
# unpack required components from the input ground truth # unpack required components from the input ground truth
boxes = tf.cast(y_true['bbox'], dtype) boxes = tf.cast(y_true['bbox'], dtype)
...@@ -391,18 +391,18 @@ def build_batch_grided_gt(y_true, mask, size, dtype, use_tie_breaker): ...@@ -391,18 +391,18 @@ def build_batch_grided_gt(y_true, mask, size, dtype, use_tie_breaker):
Args: Args:
y_true: tf.Tensor[] ground truth y_true: tf.Tensor[] ground truth
[batch, box coords[0:4], classes_onehot[0:-1], best_fit_anchor_box] [batch, box coords[0:4], classes_onehot[0:-1], best_fit_anchor_box].
mask: list of the anchor boxes choresponding to the output, mask: list of the anchor boxes choresponding to the output,
ex. [1, 2, 3] tells this layer to predict only the first 3 anchors ex. [1, 2, 3] tells this layer to predict only the first 3 anchors
in the total. in the total.
size: the dimensions of this output, for regular, it progresses from size: the dimensions of this output, for regular, it progresses from
13, to 26, to 52 13, to 26, to 52.
dtype: expected output datatype dtype: expected output datatype.
use_tie_breaker: boolean value for wether or not to use the tie use_tie_breaker: boolean value for whether or not to use the tie
breaker breaker.
Returns: Returns:
tf.Tensor[] of shape [batch, size, size, #of_anchors, 4, 1, num_classes] tf.Tensor[] of shape [batch, size, size, #of_anchors, 4, 1, num_classes].
""" """
# unpack required components from the input ground truth # unpack required components from the input ground truth
boxes = tf.cast(y_true['bbox'], dtype) boxes = tf.cast(y_true['bbox'], dtype)
...@@ -521,4 +521,3 @@ def build_batch_grided_gt(y_true, mask, size, dtype, use_tie_breaker): ...@@ -521,4 +521,3 @@ def build_batch_grided_gt(y_true, mask, size, dtype, use_tie_breaker):
update = update.stack() update = update.stack()
full = tf.tensor_scatter_nd_update(full, update_index, update) full = tf.tensor_scatter_nd_update(full, update_index, update)
return full return full
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""preprocess_ops tests."""
from absl.testing import parameterized from absl.testing import parameterized
import numpy as np import numpy as np
import tensorflow as tf import tensorflow as tf
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment