Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
19d930c3
Commit
19d930c3
authored
Mar 19, 2020
by
Allen Wang
Committed by
A. Unique TensorFlower
Mar 19, 2020
Browse files
Update ResNet README
PiperOrigin-RevId: 301872579
parent
4ae295c3
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
6 additions
and
6 deletions
+6
-6
official/vision/image_classification/README.md
official/vision/image_classification/README.md
+6
-6
No files found.
official/vision/image_classification/README.md
View file @
19d930c3
...
...
@@ -13,7 +13,7 @@ For more information about other types of models, please refer to this
Similar to the
[
estimator implementation
](
../../r1/resnet
)
, the Keras
implementation has code for the ImageNet dataset. The ImageNet
version uses a ResNet50 model implemented in
[
`resnet_model.py`
](
./resnet_model.py
)
.
[
`resnet_model.py`
](
./resnet
/resnet
_model.py
)
.
Please make sure that you have the latest version of TensorFlow
installed and
...
...
@@ -36,14 +36,14 @@ provide a few options.
Once your dataset is ready, you can begin training the model as follows:
```
bash
python resnet_imagenet_main.py
python
resnet/
resnet_imagenet_main.py
```
Again, if you did not download the data to the default directory, specify the
location with the
`--data_dir`
flag:
```
bash
python resnet_imagenet_main.py
--data_dir
=
/path/to/imagenet
python
resnet/
resnet_imagenet_main.py
--data_dir
=
/path/to/imagenet
```
There are more flag options you can specify. Here are some examples:
...
...
@@ -62,7 +62,7 @@ For example, this is a typical command line to run with ImageNet data with
batch size 128 per GPU:
```
bash
python
-m
resnet_imagenet_main
\
python
-m
resnet/
resnet_imagenet_main
.py
\
--model_dir
=
/tmp/model_dir/something
\
--num_gpus
=
2
\
--batch_size
=
128
\
...
...
@@ -120,7 +120,7 @@ From a GCE VM, you can run the following command to train ResNet for one epoch
on a v2-8 or v3-8 TPU:
```
bash
python resnet_ctl_imagenet_main.py
\
python
resnet/
resnet_ctl_imagenet_main.py
\
--tpu
=
$TPU_NAME
\
--model_dir
=
$MODEL_DIR
\
--data_dir
=
$DATA_DIR
\
...
...
@@ -140,7 +140,7 @@ python resnet_ctl_imagenet_main.py \
To train the ResNet to convergence, run it for 90 epochs:
```
bash
python resnet_ctl_imagenet_main.py
\
python
resnet/
resnet_ctl_imagenet_main.py
\
--tpu
=
$TPU_NAME
\
--model_dir
=
$MODEL_DIR
\
--data_dir
=
$DATA_DIR
\
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment