Commit 18de5380 authored by Yash Katariya's avatar Yash Katariya Committed by Mark Daoust
Browse files

Replaced 'relu' with tf.nn.relu and similarly for other activations

parent 20070ca4
......@@ -292,9 +292,9 @@
"cell_type": "code",
"source": [
"baseline_model = keras.Sequential([\n",
" keras.layers.Dense(16, activation='relu', input_shape=(10000,)),\n",
" keras.layers.Dense(16, activation='relu'),\n",
" keras.layers.Dense(1, activation='sigmoid')\n",
" keras.layers.Dense(16, activation=tf.nn.relu, input_shape=(10000,)),\n",
" keras.layers.Dense(16, activation=tf.nn.relu),\n",
" keras.layers.Dense(1, activation=tf.nn.sigmoid)\n",
"])\n",
"\n",
"baseline_model.compile(optimizer='adam',\n",
......@@ -363,9 +363,9 @@
"cell_type": "code",
"source": [
"smaller_model = keras.Sequential([\n",
" keras.layers.Dense(4, activation='relu', input_shape=(10000,)),\n",
" keras.layers.Dense(4, activation='relu'),\n",
" keras.layers.Dense(1, activation='sigmoid')\n",
" keras.layers.Dense(4, activation=tf.nn.relu, input_shape=(10000,)),\n",
" keras.layers.Dense(4, activation=tf.nn.relu),\n",
" keras.layers.Dense(1, activation=tf.nn.sigmoid)\n",
"])\n",
"\n",
"smaller_model.compile(optimizer='adam',\n",
......@@ -436,9 +436,9 @@
"cell_type": "code",
"source": [
"bigger_model = keras.models.Sequential([\n",
" keras.layers.Dense(512, activation='relu', input_shape=(10000,)),\n",
" keras.layers.Dense(512, activation='relu'),\n",
" keras.layers.Dense(1, activation='sigmoid')\n",
" keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(10000,)),\n",
" keras.layers.Dense(512, activation=tf.nn.relu),\n",
" keras.layers.Dense(1, activation=tf.nn.sigmoid)\n",
"])\n",
"\n",
"bigger_model.compile(optimizer='adam',\n",
......@@ -604,10 +604,10 @@
"source": [
"l2_model = keras.models.Sequential([\n",
" keras.layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),\n",
" activation='relu', input_shape=(10000,)),\n",
" activation=tf.nn.relu, input_shape=(10000,)),\n",
" keras.layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),\n",
" activation='relu'),\n",
" keras.layers.Dense(1, activation='sigmoid')\n",
" activation=tf.nn.relu),\n",
" keras.layers.Dense(1, activation=tf.nn.sigmoid)\n",
"])\n",
"\n",
"l2_model.compile(optimizer='adam',\n",
......@@ -695,11 +695,11 @@
"cell_type": "code",
"source": [
"dpt_model = keras.models.Sequential([\n",
" keras.layers.Dense(16, activation='relu', input_shape=(10000,)),\n",
" keras.layers.Dense(16, activation=tf.nn.relu, input_shape=(10000,)),\n",
" keras.layers.Dropout(0.5),\n",
" keras.layers.Dense(16, activation='relu'),\n",
" keras.layers.Dense(16, activation=tf.nn.relu),\n",
" keras.layers.Dropout(0.5),\n",
" keras.layers.Dense(1, activation='sigmoid')\n",
" keras.layers.Dense(1, activation=tf.nn.sigmoid)\n",
"])\n",
"\n",
"dpt_model.compile(optimizer='adam',\n",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment