Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
18de5380
Commit
18de5380
authored
Jun 22, 2018
by
Yash Katariya
Committed by
Mark Daoust
Jun 22, 2018
Browse files
Replaced 'relu' with tf.nn.relu and similarly for other activations
parent
20070ca4
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
15 additions
and
15 deletions
+15
-15
samples/core/get_started/overfit_and_underfit.ipynb
samples/core/get_started/overfit_and_underfit.ipynb
+15
-15
No files found.
samples/core/get_started/overfit_and_underfit.ipynb
View file @
18de5380
...
...
@@ -292,9 +292,9 @@
"cell_type": "code",
"source": [
"baseline_model = keras.Sequential([\n",
" keras.layers.Dense(16, activation=
'
relu
'
, input_shape=(10000,)),\n",
" keras.layers.Dense(16, activation=
'
relu
'
),\n",
" keras.layers.Dense(1, activation=
'
sigmoid
'
)\n",
" keras.layers.Dense(16, activation=
tf.nn.
relu, input_shape=(10000,)),\n",
" keras.layers.Dense(16, activation=
tf.nn.
relu),\n",
" keras.layers.Dense(1, activation=
tf.nn.
sigmoid)\n",
"])\n",
"\n",
"baseline_model.compile(optimizer='adam',\n",
...
...
@@ -363,9 +363,9 @@
"cell_type": "code",
"source": [
"smaller_model = keras.Sequential([\n",
" keras.layers.Dense(4, activation=
'
relu
'
, input_shape=(10000,)),\n",
" keras.layers.Dense(4, activation=
'
relu
'
),\n",
" keras.layers.Dense(1, activation=
'
sigmoid
'
)\n",
" keras.layers.Dense(4, activation=
tf.nn.
relu, input_shape=(10000,)),\n",
" keras.layers.Dense(4, activation=
tf.nn.
relu),\n",
" keras.layers.Dense(1, activation=
tf.nn.
sigmoid)\n",
"])\n",
"\n",
"smaller_model.compile(optimizer='adam',\n",
...
...
@@ -436,9 +436,9 @@
"cell_type": "code",
"source": [
"bigger_model = keras.models.Sequential([\n",
" keras.layers.Dense(512, activation=
'
relu
'
, input_shape=(10000,)),\n",
" keras.layers.Dense(512, activation=
'
relu
'
),\n",
" keras.layers.Dense(1, activation=
'
sigmoid
'
)\n",
" keras.layers.Dense(512, activation=
tf.nn.
relu, input_shape=(10000,)),\n",
" keras.layers.Dense(512, activation=
tf.nn.
relu),\n",
" keras.layers.Dense(1, activation=
tf.nn.
sigmoid)\n",
"])\n",
"\n",
"bigger_model.compile(optimizer='adam',\n",
...
...
@@ -604,10 +604,10 @@
"source": [
"l2_model = keras.models.Sequential([\n",
" keras.layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),\n",
" activation=
'
relu
'
, input_shape=(10000,)),\n",
" activation=
tf.nn.
relu, input_shape=(10000,)),\n",
" keras.layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),\n",
" activation=
'
relu
'
),\n",
" keras.layers.Dense(1, activation=
'
sigmoid
'
)\n",
" activation=
tf.nn.
relu),\n",
" keras.layers.Dense(1, activation=
tf.nn.
sigmoid)\n",
"])\n",
"\n",
"l2_model.compile(optimizer='adam',\n",
...
...
@@ -695,11 +695,11 @@
"cell_type": "code",
"source": [
"dpt_model = keras.models.Sequential([\n",
" keras.layers.Dense(16, activation=
'
relu
'
, input_shape=(10000,)),\n",
" keras.layers.Dense(16, activation=
tf.nn.
relu, input_shape=(10000,)),\n",
" keras.layers.Dropout(0.5),\n",
" keras.layers.Dense(16, activation=
'
relu
'
),\n",
" keras.layers.Dense(16, activation=
tf.nn.
relu),\n",
" keras.layers.Dropout(0.5),\n",
" keras.layers.Dense(1, activation=
'
sigmoid
'
)\n",
" keras.layers.Dense(1, activation=
tf.nn.
sigmoid)\n",
"])\n",
"\n",
"dpt_model.compile(optimizer='adam',\n",
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment