"torchvision/git@developer.sourcefind.cn:OpenDAS/vision.git" did not exist on "f1967823d3229d9f9770c932118dbb29e9d05e12"
Unverified Commit 141ed951 authored by vivek rathod's avatar vivek rathod Committed by GitHub
Browse files

Merge pull request #2637 from tombstone/nasnet_release

nasnet config, model and release info.
parents 74a03640 6c75caa6
...@@ -31,43 +31,58 @@ https://scholar.googleusercontent.com/scholar.bib?q=info:l291WsrB-hQJ:scholar.go ...@@ -31,43 +31,58 @@ https://scholar.googleusercontent.com/scholar.bib?q=info:l291WsrB-hQJ:scholar.go
## Table of contents ## Table of contents
Before You Start:
* <a href='g3doc/installation.md'>Installation</a><br>
Quick Start: Quick Start:
* <a href='object_detection_tutorial.ipynb'>
* <a href='object_detection_tutorial.ipynb'>
Quick Start: Jupyter notebook for off-the-shelf inference</a><br> Quick Start: Jupyter notebook for off-the-shelf inference</a><br>
* <a href="g3doc/running_pets.md">Quick Start: Training a pet detector</a><br> * <a href="g3doc/running_pets.md">Quick Start: Training a pet detector</a><br>
Setup: Setup:
* <a href='g3doc/configuring_jobs.md'>
* <a href='g3doc/installation.md'>Installation</a><br>
* <a href='g3doc/configuring_jobs.md'>
Configuring an object detection pipeline</a><br> Configuring an object detection pipeline</a><br>
* <a href='g3doc/preparing_inputs.md'>Preparing inputs</a><br> * <a href='g3doc/preparing_inputs.md'>Preparing inputs</a><br>
Running: Running:
* <a href='g3doc/running_locally.md'>Running locally</a><br>
* <a href='g3doc/running_on_cloud.md'>Running on the cloud</a><br> * <a href='g3doc/running_locally.md'>Running locally</a><br>
* <a href='g3doc/running_on_cloud.md'>Running on the cloud</a><br>
Extras: Extras:
* <a href='g3doc/detection_model_zoo.md'>Tensorflow detection model zoo</a><br>
* <a href='g3doc/exporting_models.md'> * <a href='g3doc/detection_model_zoo.md'>Tensorflow detection model zoo</a><br>
* <a href='g3doc/exporting_models.md'>
Exporting a trained model for inference</a><br> Exporting a trained model for inference</a><br>
* <a href='g3doc/defining_your_own_model.md'> * <a href='g3doc/defining_your_own_model.md'>
Defining your own model architecture</a><br> Defining your own model architecture</a><br>
* <a href='g3doc/using_your_own_dataset.md'> * <a href='g3doc/using_your_own_dataset.md'>
Bringing in your own dataset</a><br> Bringing in your own dataset</a><br>
## Getting Help ## Getting Help
Please report bugs to the tensorflow/models/ Github To get help with issues you may encounter using the Tensorflow Object Detection
API, create a new question on [StackOverflow](https://stackoverflow.com/) with
the tags "tensorflow" and "object-detection".
Please report bugs (actually broken code, not usage questions) to the
tensorflow/models Github
[issue tracker](https://github.com/tensorflow/models/issues), prefixing the [issue tracker](https://github.com/tensorflow/models/issues), prefixing the
issue name with "object_detection". To get help with issues you may encounter issue name with "object_detection".
using the Tensorflow Object Detection API, create a new question on
[StackOverflow](https://stackoverflow.com/) with the tags "tensorflow" and
"object-detection".
## Release information ## Release information
### October 31, 2017
We have released a new state-of-the-art model for object detection using
the Faster-RCNN with the
[NASNet-A image featurization](https://arxiv.org/abs/1707.07012). This
model achieves mAP of 43.1% on the test-dev validation dataset for COCO,
improving on the best available model in the zoo by 6% in terms
of absolute mAP.
<b>Thanks to contributors</b>: Barret Zoph, Vijay Vasudevan, Jonathon Shlens, Quoc Le
### August 11, 2017 ### August 11, 2017
We have released an update to the [Android Detect We have released an update to the [Android Detect
......
...@@ -40,3 +40,4 @@ Inside the un-tar'ed directory, you will find: ...@@ -40,3 +40,4 @@ Inside the un-tar'ed directory, you will find:
| [rfcn_resnet101_coco](http://download.tensorflow.org/models/object_detection/rfcn_resnet101_coco_11_06_2017.tar.gz) | medium | 30 | Boxes | | [rfcn_resnet101_coco](http://download.tensorflow.org/models/object_detection/rfcn_resnet101_coco_11_06_2017.tar.gz) | medium | 30 | Boxes |
| [faster_rcnn_resnet101_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_11_06_2017.tar.gz) | medium | 32 | Boxes | | [faster_rcnn_resnet101_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_11_06_2017.tar.gz) | medium | 32 | Boxes |
| [faster_rcnn_inception_resnet_v2_atrous_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_coco_11_06_2017.tar.gz) | slow | 37 | Boxes | | [faster_rcnn_inception_resnet_v2_atrous_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_coco_11_06_2017.tar.gz) | slow | 37 | Boxes |
| [faster_rcnn_nas](http://download.tensorflow.org/models/object_detection/faster_rcnn_nas_17_10_2017.tar.gz) | slow | 43 | Boxes |
...@@ -298,10 +298,11 @@ python object_detection/export_inference_graph.py \ ...@@ -298,10 +298,11 @@ python object_detection/export_inference_graph.py \
--input_type image_tensor \ --input_type image_tensor \
--pipeline_config_path object_detection/samples/configs/faster_rcnn_resnet101_pets.config \ --pipeline_config_path object_detection/samples/configs/faster_rcnn_resnet101_pets.config \
--trained_checkpoint_prefix model.ckpt-${CHECKPOINT_NUMBER} \ --trained_checkpoint_prefix model.ckpt-${CHECKPOINT_NUMBER} \
--output_directory output_inference_graph.pb --output_directory exported_graphs
``` ```
Afterwards, you should see a graph named `output_inference_graph.pb`. Afterwards, you should see a directory named `exported_graphs` containing the
SavedModel and frozen graph.
## What's Next ## What's Next
......
# Faster R-CNN with NASNet-A featurization
# Configured for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model {
faster_rcnn {
num_classes: 90
image_resizer {
# TODO: Only fixed_shape_resizer is currently supported for NASNet
# featurization. The reason for this is that nasnet.py only supports
# inputs with fully known shapes. We need to update nasnet.py to handle
# shapes not known at compile time.
fixed_shape_resizer {
height: 1200
width: 1200
}
}
feature_extractor {
type: 'faster_rcnn_nas'
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 16
width_stride: 16
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 50
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 17
maxpool_kernel_size: 1
maxpool_stride: 1
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: false
dropout_keep_probability: 1.0
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config: {
batch_size: 1
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.0003
schedule {
step: 0
learning_rate: .0003
}
schedule {
step: 900000
learning_rate: .00003
}
schedule {
step: 1200000
learning_rate: .000003
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options {
random_horizontal_flip {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record"
}
label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
}
eval_config: {
metrics_set: "pascal_voc_metrics"
num_examples: 8000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10}
eval_input_reader: {
tf_record_input_reader {
input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record"
}
label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt"
shuffle: false
num_readers: 1
num_epochs: 1
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment