Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
10048a7c
"vscode:/vscode.git/clone" did not exist on "d3115faf23fb740389de01ef3eea10ef275c5f95"
Commit
10048a7c
authored
Nov 17, 2021
by
Hongkun Yu
Committed by
A. Unique TensorFlower
Nov 17, 2021
Browse files
Internal change
PiperOrigin-RevId: 410592289
parent
eabe61e0
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
77 additions
and
0 deletions
+77
-0
official/modeling/grad_utils_test.py
official/modeling/grad_utils_test.py
+77
-0
No files found.
official/modeling/grad_utils_test.py
0 → 100644
View file @
10048a7c
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for grad_utils."""
import
tensorflow
as
tf
from
official.modeling
import
grad_utils
from
official.modeling
import
performance
class
GradUtilsTest
(
tf
.
test
.
TestCase
):
def
test_minimize
(
self
):
optimizer
=
tf
.
keras
.
optimizers
.
SGD
(
0.1
)
with
tf
.
GradientTape
()
as
tape
:
model
=
tf
.
keras
.
layers
.
Dense
(
2
)
outputs
=
model
(
tf
.
zeros
((
2
,
2
),
tf
.
float32
))
loss
=
tf
.
reduce_mean
(
outputs
)
grad_utils
.
minimize_using_explicit_allreduce
(
tape
,
optimizer
,
loss
,
model
.
trainable_variables
)
def
test_minimize_fp16
(
self
):
optimizer
=
performance
.
configure_optimizer
(
tf
.
keras
.
optimizers
.
SGD
(
0.1
),
use_float16
=
True
)
performance
.
set_mixed_precision_policy
(
tf
.
float16
)
with
tf
.
GradientTape
()
as
tape
:
model
=
tf
.
keras
.
layers
.
Dense
(
2
)
outputs
=
model
(
tf
.
zeros
((
2
,
2
),
tf
.
float16
))
loss
=
tf
.
reduce_mean
(
outputs
)
grad_utils
.
minimize_using_explicit_allreduce
(
tape
,
optimizer
,
loss
,
model
.
trainable_variables
)
# Test other fp16 settings.
def
_clip_by_global_norm
(
grads_and_vars
):
grads
,
tvars
=
list
(
zip
(
*
grads_and_vars
))
(
grads
,
_
)
=
tf
.
clip_by_global_norm
(
grads
,
clip_norm
=
1.0
)
return
zip
(
grads
,
tvars
)
with
tf
.
GradientTape
()
as
tape
:
model
=
tf
.
keras
.
layers
.
Dense
(
2
)
outputs
=
model
(
tf
.
zeros
((
2
,
2
),
tf
.
float16
))
loss
=
tf
.
reduce_mean
(
outputs
)
optimizer
=
performance
.
configure_optimizer
(
tf
.
keras
.
optimizers
.
SGD
(
0.1
),
use_float16
=
True
,
loss_scale
=
128
)
grad_utils
.
minimize_using_explicit_allreduce
(
tape
,
optimizer
,
loss
,
model
.
trainable_variables
,
pre_allreduce_callbacks
=
[
_clip_by_global_norm
],
post_allreduce_callbacks
=
[
_clip_by_global_norm
])
def
test_set_mixed_precision_policy
(
self
):
performance
.
set_mixed_precision_policy
(
tf
.
float16
)
performance
.
set_mixed_precision_policy
(
tf
.
bfloat16
)
performance
.
set_mixed_precision_policy
(
tf
.
float32
)
with
self
.
assertRaises
(
ValueError
):
performance
.
set_mixed_precision_policy
(
tf
.
int32
)
if
__name__
==
'__main__'
:
tf
.
test
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment