Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
0d713a1b
Commit
0d713a1b
authored
Aug 18, 2017
by
Alan Yee
Committed by
GitHub
Aug 18, 2017
Browse files
Update VariationalAutoencoderRunner
-Fixed print styling -Spaced import statements according to PEP 8
parent
70097a35
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
9 additions
and
6 deletions
+9
-6
autoencoder/VariationalAutoencoderRunner.py
autoencoder/VariationalAutoencoderRunner.py
+9
-6
No files found.
autoencoder/VariationalAutoencoderRunner.py
View file @
0d713a1b
import
numpy
as
np
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
sklearn.preprocessing
as
prep
import
sklearn.preprocessing
as
prep
import
tensorflow
as
tf
import
tensorflow
as
tf
from
tensorflow.examples.tutorials.mnist
import
input_data
from
tensorflow.examples.tutorials.mnist
import
input_data
...
@@ -9,7 +12,6 @@ from autoencoder_models.VariationalAutoencoder import VariationalAutoencoder
...
@@ -9,7 +12,6 @@ from autoencoder_models.VariationalAutoencoder import VariationalAutoencoder
mnist
=
input_data
.
read_data_sets
(
'MNIST_data'
,
one_hot
=
True
)
mnist
=
input_data
.
read_data_sets
(
'MNIST_data'
,
one_hot
=
True
)
def
min_max_scale
(
X_train
,
X_test
):
def
min_max_scale
(
X_train
,
X_test
):
preprocessor
=
prep
.
MinMaxScaler
().
fit
(
X_train
)
preprocessor
=
prep
.
MinMaxScaler
().
fit
(
X_train
)
X_train
=
preprocessor
.
transform
(
X_train
)
X_train
=
preprocessor
.
transform
(
X_train
)
...
@@ -29,7 +31,8 @@ training_epochs = 20
...
@@ -29,7 +31,8 @@ training_epochs = 20
batch_size
=
128
batch_size
=
128
display_step
=
1
display_step
=
1
autoencoder
=
VariationalAutoencoder
(
n_input
=
784
,
autoencoder
=
VariationalAutoencoder
(
n_input
=
784
,
n_hidden
=
200
,
n_hidden
=
200
,
optimizer
=
tf
.
train
.
AdamOptimizer
(
learning_rate
=
0.001
))
optimizer
=
tf
.
train
.
AdamOptimizer
(
learning_rate
=
0.001
))
...
@@ -47,6 +50,6 @@ for epoch in range(training_epochs):
...
@@ -47,6 +50,6 @@ for epoch in range(training_epochs):
# Display logs per epoch step
# Display logs per epoch step
if
epoch
%
display_step
==
0
:
if
epoch
%
display_step
==
0
:
print
(
"Epoch:"
,
'%
04
d'
%
(
epoch
+
1
),
"
c
ost
=
"
,
"{:.9f}"
.
format
(
avg_cost
))
print
(
"Epoch:
"
,
'%d
,
'
%
(
epoch
+
1
),
"
C
ost
:
"
,
"{:.9f}"
.
format
(
avg_cost
))
print
(
"Total cost: "
+
str
(
autoencoder
.
calc_total_cost
(
X_test
)))
print
(
"Total cost: "
+
str
(
autoencoder
.
calc_total_cost
(
X_test
)))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment