Commit 0d713a1b authored by Alan Yee's avatar Alan Yee Committed by GitHub
Browse files

Update VariationalAutoencoderRunner

-Fixed print styling
-Spaced import statements according to PEP 8
parent 70097a35
import numpy as np from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import sklearn.preprocessing as prep import sklearn.preprocessing as prep
import tensorflow as tf import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data from tensorflow.examples.tutorials.mnist import input_data
...@@ -9,7 +12,6 @@ from autoencoder_models.VariationalAutoencoder import VariationalAutoencoder ...@@ -9,7 +12,6 @@ from autoencoder_models.VariationalAutoencoder import VariationalAutoencoder
mnist = input_data.read_data_sets('MNIST_data', one_hot = True) mnist = input_data.read_data_sets('MNIST_data', one_hot = True)
def min_max_scale(X_train, X_test): def min_max_scale(X_train, X_test):
preprocessor = prep.MinMaxScaler().fit(X_train) preprocessor = prep.MinMaxScaler().fit(X_train)
X_train = preprocessor.transform(X_train) X_train = preprocessor.transform(X_train)
...@@ -29,9 +31,10 @@ training_epochs = 20 ...@@ -29,9 +31,10 @@ training_epochs = 20
batch_size = 128 batch_size = 128
display_step = 1 display_step = 1
autoencoder = VariationalAutoencoder(n_input = 784, autoencoder = VariationalAutoencoder(
n_hidden = 200, n_input = 784,
optimizer = tf.train.AdamOptimizer(learning_rate = 0.001)) n_hidden = 200,
optimizer = tf.train.AdamOptimizer(learning_rate = 0.001))
for epoch in range(training_epochs): for epoch in range(training_epochs):
avg_cost = 0. avg_cost = 0.
...@@ -47,6 +50,6 @@ for epoch in range(training_epochs): ...@@ -47,6 +50,6 @@ for epoch in range(training_epochs):
# Display logs per epoch step # Display logs per epoch step
if epoch % display_step == 0: if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch + 1), "cost=", "{:.9f}".format(avg_cost)) print("Epoch: ", '%d,' % (epoch + 1), "Cost: ", "{:.9f}".format(avg_cost))
print("Total cost: " + str(autoencoder.calc_total_cost(X_test))) print("Total cost: " + str(autoencoder.calc_total_cost(X_test)))
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment