Commit 0a770680 authored by Dan Holtmann-Rice's avatar Dan Holtmann-Rice Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 377131555
parent 4ca9e10a
# Copyright 2021 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defines an "action" abstraction for use with `orbit.Controller`.
"Actions" are simply arbitrary callables that are applied by the `Controller`
to the output of train steps (after each inner loop of `steps_per_loop` steps)
or an evaluation. This provides a hook mechanism, enabling things like reporting
metrics to Vizier, model exporting, additional logging, etc.
The basic `Action` abstraction (just a type alias) is defined in the
`controller` module. This `actions` module adds a `ConditionalAction` utility
class to make it easy to trigger actions conditionally based on reusable
predicates, as well as a small handful of predefined conditions/actions (in
particular, a `NewBestMetric` condition and an `ExportSavedModel` action).
One example of using actions to do metric-conditional export:
new_best_metric = orbit.actions.NewBestMetric('accuracy')
export_action = orbit.actions.ConditionalAction(
condition=lambda x: x['accuracy'] > 0.9 and new_best_metric(x),
action=orbit.actions.ExportSavedModel(
model,
orbit.actions.ExportFileManager(
base_name=f'{FLAGS.model_dir}/saved_model',
next_id_fn=trainer.global_step.numpy),
signatures=model.infer))
controller = orbit.Controller(
strategy=strategy,
trainer=trainer,
evaluator=evaluator,
eval_actions=[export_action],
global_step=trainer.global_step,
steps_per_loop=FLAGS.steps_per_loop,
checkpoint_manager=checkpoint_manager,
summary_interval=1000)
Note: In multi-client settings where each client runs its own `Controller`
instance, some care should be taken in deciding which clients should run certain
actions. Isolating actions to an individual client (say client 0) can be
achieved using `ConditionalAction` as follows:
client_0_actions = orbit.actions.ConditionalAction(
condition=lambda _: client_id() == 0,
action=[
...
])
In particular, the `NewBestMetric` condition may be used in multi-client
settings if all clients are guaranteed to compute the same metric (ensuring this
is up to client code, not Orbit). However, when saving metrics it may be helpful
to avoid unnecessary writes by setting the `write_value` parameter to `False`
for most clients.
"""
from orbit.actions.conditional_action import ConditionalAction
from orbit.actions.export_saved_model import ExportFileManager
from orbit.actions.export_saved_model import ExportSavedModel
from orbit.actions.new_best_metric import JSONPersistedValue
from orbit.actions.new_best_metric import NewBestMetric
# Copyright 2021 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Provides a `ConditionalAction` abstraction."""
from typing import Any, Callable, Sequence, Union
from orbit import controller
from orbit import runner
import tensorflow as tf
Condition = Callable[[runner.Output], Union[bool, tf.Tensor]]
def _as_sequence(maybe_sequence: Union[Any, Sequence[Any]]) -> Sequence[Any]:
if isinstance(maybe_sequence, Sequence):
return maybe_sequence
return [maybe_sequence]
class ConditionalAction:
"""Represents an action that is only taken when a given condition is met.
This class is itself an `Action` (a callable that can be applied to train or
eval outputs), but is intended to make it easier to write modular and reusable
conditions by decoupling "when" something whappens (the condition) from "what"
happens (the action).
"""
def __init__(
self,
condition: Condition,
action: Union[controller.Action, Sequence[controller.Action]],
):
"""Initializes the instance.
Args:
condition: A callable accepting train or eval outputs and returing a bool.
action: The action (or optionally sequence of actions) to perform when
`condition` is met.
"""
self.condition = condition
self.action = action
def __call__(self, output: runner.Output) -> None:
if self.condition(output):
for action in _as_sequence(self.action):
action(output)
# Copyright 2021 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for orbit.actions.conditional_action."""
from orbit import actions
import tensorflow as tf
class ConditionalActionTest(tf.test.TestCase):
def test_conditional_action(self):
# Define a function to raise an AssertionError, since we can't in a lambda.
def raise_assertion(arg):
raise AssertionError(str(arg))
conditional_action = actions.ConditionalAction(
condition=lambda x: x['value'], action=raise_assertion)
conditional_action({'value': False}) # Nothing is raised.
with self.assertRaises(AssertionError) as ctx:
conditional_action({'value': True})
self.assertEqual(ctx.exception.message, "{'value': True}")
if __name__ == '__main__':
tf.test.main()
# Copyright 2021 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Provides the `ExportSavedModel` action and associated helper classes."""
from typing import Callable, Optional
import tensorflow as tf
class _CounterIdFn:
"""Implements a counter-based ID function for `ExportFileManager`."""
def __init__(self, base_name: str):
filenames = tf.io.gfile.glob(f'{base_name}-*')
max_counter = -1
for filename in filenames:
try:
_, file_number = filename.rsplit('-', maxsplit=1)
max_counter = max(max_counter, int(file_number))
except ValueError:
continue
self.value = max_counter + 1
def __call__(self):
output = self.value
self.value += 1
return output
class ExportFileManager:
"""Utility class that manages a group of files with a shared base name.
For actions like SavedModel exporting, there are potentially many different
file naming and cleanup strategies that may be desirable. This class provides
a basic interface allowing SavedModel export to be decoupled from these
details, and a default implementation that should work for many basic
scenarios. Users may subclass this class to alter behavior and define more
customized naming and cleanup strategies.
"""
def __init__(self,
base_name: str,
max_to_keep: int = 5,
next_id_fn: Optional[Callable[[], int]] = None):
"""Initializes the instance.
Args:
base_name: A shared base name for file names generated by this class.
max_to_keep: The maximum number of files matching `base_name` to keep
after each call to `cleanup`. The most recent (as determined by file
modification time) `max_to_keep` files are preserved; the rest are
deleted. If < 0, all files are preserved.
next_id_fn: An optional callable that returns integer IDs to append to
base name (formatted as `'{base_name}-{id}'`). The order of integers is
used to sort files to determine the oldest ones deleted by `clean_up`.
If not supplied, a default ID based on an incrementing counter is used.
One common alternative maybe be to use the current global step count,
for instance passing `next_id_fn=global_step.numpy`.
"""
self._base_name = base_name
self._max_to_keep = max_to_keep
self._next_id_fn = next_id_fn or _CounterIdFn(base_name)
@property
def managed_files(self):
"""Returns all files managed by this instance, in sorted order.
Returns:
The list of files matching the `base_name` provided when constructing this
`ExportFileManager` instance, sorted in increasing integer order of the
IDs returned by `next_id_fn`.
"""
def id_key(name):
_, id_num = name.rsplit('-', maxsplit=1)
return int(id_num)
filenames = tf.io.gfile.glob(f'{self._base_name}-*')
return sorted(filenames, key=id_key)
def clean_up(self):
"""Cleans up old files matching `{base_name}-*`.
The most recent `max_to_keep` files are preserved.
"""
if self._max_to_keep < 0:
return
for filename in self.managed_files[:-self._max_to_keep]:
tf.io.gfile.rmtree(filename)
def next_name(self) -> str:
"""Returns a new file name based on `base_name` and `next_id_fn()`."""
return f'{self._base_name}-{self._next_id_fn()}'
class ExportSavedModel:
"""Action that exports the given model as a SavedModel."""
def __init__(self,
model: tf.Module,
file_manager: ExportFileManager,
signatures,
options: Optional[tf.saved_model.SaveOptions] = None):
"""Initializes the instance.
Args:
model: The model to export.
file_manager: An instance of `ExportFileManager` (or a subclass), that
provides file naming and cleanup functionality.
signatures: The signatures to forward to `tf.saved_model.save()`.
options: Optional options to forward to `tf.saved_model.save()`.
"""
self.model = model
self.file_manager = file_manager
self.signatures = signatures
self.options = options
def __call__(self, _):
"""Exports the SavedModel."""
export_dir = self.file_manager.next_name()
tf.saved_model.save(self.model, export_dir, self.signatures, self.options)
self.file_manager.clean_up()
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""Tests for orbit.actions.""" """Tests for orbit.actions.export_saved_model."""
import os import os
...@@ -40,85 +40,7 @@ class TestModel(tf.Module): ...@@ -40,85 +40,7 @@ class TestModel(tf.Module):
return self.value return self.value
class ActionsTest(tf.test.TestCase): class ExportSavedModelTest(tf.test.TestCase):
def test_conditional_action(self):
# Define a function to raise an AssertionError, since we can't in a lambda.
def raise_assertion(arg):
raise AssertionError(str(arg))
conditional_action = actions.ConditionalAction(
condition=lambda x: x, action=raise_assertion)
conditional_action(False) # Nothing is raised.
with self.assertRaises(AssertionError) as ctx:
conditional_action(True)
self.assertEqual(ctx.exception.message, 'True')
def test_new_best_metric_higher_is_better(self):
new_best_metric = actions.NewBestMetric(lambda x: x, higher_is_better=True)
self.assertTrue(new_best_metric.test(0.0))
self.assertTrue(new_best_metric.commit(0.0))
self.assertFalse(new_best_metric.test(0.0))
self.assertTrue(new_best_metric.test(1.0))
def test_new_best_metric_lower_is_better(self):
new_best_metric = actions.NewBestMetric(lambda x: x, higher_is_better=False)
self.assertTrue(new_best_metric.test(0.0))
self.assertTrue(new_best_metric.commit(0.0))
self.assertFalse(new_best_metric.test(0.0))
self.assertTrue(new_best_metric.test(-1.0))
def test_new_best_metric_persistence(self):
backing_file = self.create_tempfile()
new_best_metric = actions.NewBestMetric(
lambda x: x,
higher_is_better=True,
filename=backing_file.full_path,
write_metric=False)
self.assertTrue(new_best_metric.test(0.0))
self.assertTrue(new_best_metric.commit(0.0))
self.assertFalse(new_best_metric.test(0.0))
new_best_metric = actions.NewBestMetric(
lambda x: x, higher_is_better=True, filename=backing_file.full_path)
self.assertLess(new_best_metric.best_value, 0.0)
self.assertTrue(new_best_metric.commit(5.0))
self.assertEqual(new_best_metric.best_value, 5.0)
new_best_metric = actions.NewBestMetric(
lambda x: x, higher_is_better=True, filename=backing_file.full_path)
self.assertEqual(new_best_metric.best_value, 5.0)
def test_json_persisted_value(self):
tempfile = self.create_tempfile().full_path
value = {'a': 1, 'b': 2}
persisted_value = actions.JSONPersistedValue(value, tempfile)
# The inital value is used since tempfile is empty.
self.assertEqual(persisted_value.read(), value)
persisted_value = actions.JSONPersistedValue('ignored', tempfile)
# Initial value of 'ignored' is ignored, since there's a value in tempfile.
self.assertEqual(persisted_value.read(), value)
value = [1, 2, 3]
persisted_value.write(value)
# Now that a new value is written, it gets read on initialization.
persisted_value = actions.JSONPersistedValue(['also ignored'], tempfile)
self.assertEqual(persisted_value.read(), value)
# Writes can be disabled.
persisted_value = actions.JSONPersistedValue(
'ignored', tempfile, write_value=False)
self.assertEqual(persisted_value.read(), value)
persisted_value.write("won't get persisted")
persisted_value = actions.JSONPersistedValue(
'ignored', tempfile, write_value=False)
self.assertEqual(persisted_value.read(), value)
def test_json_persisted_value_create_dirs(self):
tempfile = os.path.join(self.create_tempdir().full_path, 'subdir/value')
value = {'a': 1, 'b': 2}
# The directory is not created if write_value=False.
actions.JSONPersistedValue(value, tempfile, write_value=False)
self.assertFalse(tf.io.gfile.exists(os.path.dirname(tempfile)))
actions.JSONPersistedValue(value, tempfile)
self.assertTrue(tf.io.gfile.exists(tempfile))
def test_export_file_manager_default_ids(self): def test_export_file_manager_default_ids(self):
directory = self.create_tempdir() directory = self.create_tempdir()
......
...@@ -12,110 +12,19 @@ ...@@ -12,110 +12,19 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""Defines an "action" abstraction for use with `orbit.Controller`. """Provides the `NewBestMetric` condition and associated helper classes."""
"Actions" are simply arbitrary callables that are applied by the `Controller`
to the output of train steps (after each inner loop of `steps_per_loop` steps)
or an evaluation. This provides a hook mechanism, enabling things like reporting
metrics to Vizier, model exporting, additional logging, etc.
The basic `Action` abstraction (just a type alias) is defined in the
`controller` module. This `actions` module adds a `ConditionalAction` utility
class to make it easy to trigger actions conditionally based on reusable
predicates, as well as a small handful of predefined conditions/actions (in
particular, a `NewBestMetric` condition and an `ExportSavedModel` action).
One example of using actions to do metric-conditional export:
new_best_metric = orbit.actions.NewBestMetric('accuracy')
export_action = orbit.actions.ConditionalAction(
condition=lambda x: x['accuracy'] > 0.9 and new_best_metric(x),
action=orbit.actions.ExportSavedModel(
model,
orbit.actions.ExportFileManager(
base_name=f'{FLAGS.model_dir}/saved_model',
next_id_fn=trainer.global_step.numpy),
signatures=model.infer))
controller = orbit.Controller(
strategy=strategy,
trainer=trainer,
evaluator=evaluator,
eval_actions=[export_action],
global_step=trainer.global_step,
steps_per_loop=FLAGS.steps_per_loop,
checkpoint_manager=checkpoint_manager,
summary_interval=1000)
Note: In multi-client settings where each client runs its own `Controller`
instance, some care should be taken in deciding which clients should run certain
actions. Isolating actions to an individual client (say client 0) can be
achieved using `ConditionalAction` as follows:
client_0_actions = orbit.actions.ConditionalAction(
condition=lambda _: client_id() == 0,
action=[
...
])
In particular, the `NewBestMetric` condition may be used in multi-client
settings if all clients are guaranteed to compute the same metric (ensuring this
is up to client code, not Orbit). However, when saving metrics it may be helpful
to avoid unnecessary writes by setting the `write_value` parameter to `False`
for most clients.
"""
import json import json
import os import os
import sys import sys
from typing import Any, Callable, Optional, Sequence, Union from typing import Any, Callable, Optional, Union
import uuid import uuid
from orbit import controller
from orbit import runner from orbit import runner
from orbit import utils from orbit import utils
import tensorflow as tf import tensorflow as tf
Condition = Callable[[runner.Output], Union[bool, tf.Tensor]]
def _as_sequence(maybe_sequence: Union[Any, Sequence[Any]]) -> Sequence[Any]:
if isinstance(maybe_sequence, Sequence):
return maybe_sequence
return [maybe_sequence]
class ConditionalAction:
"""Represents an action that is only taken when a given condition is met.
This class is itself an `Action` (a callable that can be applied to train or
eval outputs), but is intended to make it easier to write modular and reusable
conditions by decoupling "when" something whappens (the condition) from "what"
happens (the action).
"""
def __init__(
self,
condition: Condition,
action: Union[controller.Action, Sequence[controller.Action]],
):
"""Initializes the instance.
Args:
condition: A callable accepting train or eval outputs and returing a bool.
action: The action (or optionally sequence of actions) to perform when
`condition` is met.
"""
self.condition = condition
self.action = action
def __call__(self, output: runner.Output) -> None:
if self.condition(output):
for action in _as_sequence(self.action):
action(output)
MetricFn = Callable[[runner.Output], Union[float, tf.Tensor]] MetricFn = Callable[[runner.Output], Union[float, tf.Tensor]]
...@@ -151,7 +60,7 @@ class NewBestMetric: ...@@ -151,7 +60,7 @@ class NewBestMetric:
Attributes: Attributes:
metric: The metric passed to __init__ (may be a string key or a callable metric: The metric passed to __init__ (may be a string key or a callable
that can be applied to train/eval output). that can be applied to train/eval output).
higher_is_better: Whether higher metric values are better. higher_is_better: Whether higher metric values are better.
""" """
...@@ -290,7 +199,7 @@ class JSONPersistedValue: ...@@ -290,7 +199,7 @@ class JSONPersistedValue:
if tf.io.gfile.exists(self._filename): if tf.io.gfile.exists(self._filename):
if tf.io.gfile.stat(self._filename).length > 0: if tf.io.gfile.stat(self._filename).length > 0:
with tf.io.gfile.GFile(self._filename, 'r') as f: with tf.io.gfile.GFile(self._filename, 'r') as f:
self._value = json.loads(f.read()) self._value = json.load(f)
elif self._write_value: elif self._write_value:
tf.io.gfile.makedirs(os.path.dirname(self._filename)) tf.io.gfile.makedirs(os.path.dirname(self._filename))
...@@ -311,119 +220,3 @@ class JSONPersistedValue: ...@@ -311,119 +220,3 @@ class JSONPersistedValue:
with tf.io.gfile.GFile(tmp_filename, 'w') as f: with tf.io.gfile.GFile(tmp_filename, 'w') as f:
json.dump(self._value, f) json.dump(self._value, f)
tf.io.gfile.rename(tmp_filename, self._filename, overwrite=True) tf.io.gfile.rename(tmp_filename, self._filename, overwrite=True)
class _CounterIdFn:
"""Implements a counter-based ID function for `ExportFileManager`."""
def __init__(self, base_name: str):
filenames = tf.io.gfile.glob(f'{base_name}-*')
max_counter = -1
for filename in filenames:
try:
_, file_number = filename.rsplit('-', maxsplit=1)
max_counter = max(max_counter, int(file_number))
except ValueError:
continue
self.value = max_counter + 1
def __call__(self):
output = self.value
self.value += 1
return output
class ExportFileManager:
"""Utility class that manages a group of files with a shared base name.
For actions like SavedModel exporting, there are potentially many different
file naming and cleanup strategies that may be desirable. This class provides
a basic interface allowing SavedModel export to be decoupled from these
details, and a default implementation that should work for many basic
scenarios. Users may subclass this class to alter behavior and define more
customized naming and cleanup strategies.
"""
def __init__(self,
base_name: str,
max_to_keep: int = 5,
next_id_fn: Optional[Callable[[], int]] = None):
"""Initializes the instance.
Args:
base_name: A shared base name for file names generated by this class.
max_to_keep: The maximum number of files matching `base_name` to keep
after each call to `cleanup`. The most recent (as determined by file
modification time) `max_to_keep` files are preserved; the rest are
deleted. If < 0, all files are preserved.
next_id_fn: An optional callable that returns integer IDs to append to
base name (formatted as `'{base_name}-{id}'`). The order of integers is
used to sort files to determine the oldest ones deleted by `clean_up`.
If not supplied, a default ID based on an incrementing counter is used.
One common alternative maybe be to use the current global step count,
for instance passing `next_id_fn=global_step.numpy`.
"""
self._base_name = base_name
self._max_to_keep = max_to_keep
self._next_id_fn = next_id_fn or _CounterIdFn(base_name)
@property
def managed_files(self):
"""Returns all files managed by this instance, in sorted order.
Returns:
The list of files matching the `base_name` provided when constructing this
`ExportFileManager` instance, sorted in increasing integer order of the
IDs returned by `next_id_fn`.
"""
def id_key(name):
_, id_num = name.rsplit('-', maxsplit=1)
return int(id_num)
filenames = tf.io.gfile.glob(f'{self._base_name}-*')
return sorted(filenames, key=id_key)
def clean_up(self):
"""Cleans up old files matching `{base_name}-*`.
The most recent `max_to_keep` files are preserved.
"""
if self._max_to_keep < 0:
return
for filename in self.managed_files[:-self._max_to_keep]:
tf.io.gfile.rmtree(filename)
def next_name(self) -> str:
"""Returns a new file name based on `base_name` and `next_id_fn()`."""
return f'{self._base_name}-{self._next_id_fn()}'
class ExportSavedModel:
"""Action that exports the given model as a SavedModel."""
def __init__(self,
model: tf.Module,
file_manager: ExportFileManager,
signatures,
options: Optional[tf.saved_model.SaveOptions] = None):
"""Initializes the instance.
Args:
model: The model to export.
file_manager: An instance of `ExportFileManager` (or a subclass), that
provides file naming and cleanup functionality.
signatures: The signatures to forward to `tf.saved_model.save()`.
options: Optional options to forward to `tf.saved_model.save()`.
"""
self.model = model
self.file_manager = file_manager
self.signatures = signatures
self.options = options
def __call__(self, _):
"""Exports the SavedModel."""
export_dir = self.file_manager.next_name()
tf.saved_model.save(self.model, export_dir, self.signatures, self.options)
self.file_manager.clean_up()
# Copyright 2021 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for orbit.actions.new_best_metric."""
import os
from orbit import actions
import tensorflow as tf
class NewBestMetricTest(tf.test.TestCase):
def test_new_best_metric_higher_is_better(self):
new_best_metric = actions.NewBestMetric(
lambda x: x['value'], higher_is_better=True)
self.assertTrue(new_best_metric.test({'value': 0.0}))
self.assertTrue(new_best_metric.commit({'value': 0.0}))
self.assertFalse(new_best_metric.test({'value': 0.0}))
self.assertTrue(new_best_metric.test({'value': 1.0}))
def test_new_best_metric_lower_is_better(self):
new_best_metric = actions.NewBestMetric('value', higher_is_better=False)
self.assertTrue(new_best_metric.test({'value': 0.0}))
self.assertTrue(new_best_metric.commit({'value': 0.0}))
self.assertFalse(new_best_metric.test({'value': 0.0}))
self.assertTrue(new_best_metric.test({'value': -1.0}))
def test_new_best_metric_persistence(self):
backing_file = self.create_tempfile()
new_best_metric = actions.NewBestMetric(
'value',
higher_is_better=True,
filename=backing_file.full_path,
write_metric=False)
self.assertTrue(new_best_metric.test({'value': 0.0}))
self.assertTrue(new_best_metric.commit({'value': 0.0}))
self.assertFalse(new_best_metric.test({'value': 0.0}))
new_best_metric = actions.NewBestMetric(
'value', higher_is_better=True, filename=backing_file.full_path)
self.assertLess(new_best_metric.best_value, 0.0)
self.assertTrue(new_best_metric.commit({'value': 5.0}))
self.assertEqual(new_best_metric.best_value, 5.0)
new_best_metric = actions.NewBestMetric(
'value', higher_is_better=True, filename=backing_file.full_path)
self.assertEqual(new_best_metric.best_value, 5.0)
def test_json_persisted_value(self):
tempfile = self.create_tempfile().full_path
value = {'a': 1, 'b': 2}
persisted_value = actions.JSONPersistedValue(value, tempfile)
# The inital value is used since tempfile is empty.
self.assertEqual(persisted_value.read(), value)
persisted_value = actions.JSONPersistedValue('ignored', tempfile)
# Initial value of 'ignored' is ignored, since there's a value in tempfile.
self.assertEqual(persisted_value.read(), value)
value = [1, 2, 3]
persisted_value.write(value)
# Now that a new value is written, it gets read on initialization.
persisted_value = actions.JSONPersistedValue(['also ignored'], tempfile)
self.assertEqual(persisted_value.read(), value)
# Writes can be disabled.
persisted_value = actions.JSONPersistedValue(
'ignored', tempfile, write_value=False)
self.assertEqual(persisted_value.read(), value)
persisted_value.write("won't get persisted")
persisted_value = actions.JSONPersistedValue(
'ignored', tempfile, write_value=False)
self.assertEqual(persisted_value.read(), value)
def test_json_persisted_value_create_dirs(self):
tempfile = os.path.join(self.create_tempdir().full_path, 'subdir/value')
value = {'a': 1, 'b': 2}
# The directory is not created if write_value=False.
actions.JSONPersistedValue(value, tempfile, write_value=False)
self.assertFalse(tf.io.gfile.exists(os.path.dirname(tempfile)))
actions.JSONPersistedValue(value, tempfile)
self.assertTrue(tf.io.gfile.exists(tempfile))
if __name__ == '__main__':
tf.test.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment