Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
09c5ae2f
Commit
09c5ae2f
authored
May 09, 2020
by
Hongkun Yu
Committed by
A. Unique TensorFlower
May 09, 2020
Browse files
Internal change
PiperOrigin-RevId: 310767440
parent
52e4ded8
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
177 additions
and
75 deletions
+177
-75
official/nlp/modeling/layers/attention.py
official/nlp/modeling/layers/attention.py
+161
-56
official/nlp/modeling/layers/attention_test.py
official/nlp/modeling/layers/attention_test.py
+11
-2
official/nlp/modeling/layers/transformer.py
official/nlp/modeling/layers/transformer.py
+0
-4
official/nlp/nhnet/decoder.py
official/nlp/nhnet/decoder.py
+5
-13
No files found.
official/nlp/modeling/layers/attention.py
View file @
09c5ae2f
# Lint as: python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# Licensed under the Apache License, Version 2.0 (the "License");
...
@@ -19,12 +20,98 @@ from __future__ import division
...
@@ -19,12 +20,98 @@ from __future__ import division
# from __future__ import google_type_annotations
# from __future__ import google_type_annotations
from
__future__
import
print_function
from
__future__
import
print_function
import
collections
import
math
import
math
import
string
import
numpy
as
np
import
tensorflow
as
tf
import
tensorflow
as
tf
from
official.nlp.modeling.layers
import
dense_einsum
from
official.nlp.modeling.layers
import
masked_softmax
from
official.nlp.modeling.layers
import
masked_softmax
EinsumDense
=
tf
.
keras
.
layers
.
experimental
.
EinsumDense
_CHR_IDX
=
string
.
ascii_lowercase
def
_build_attention_equation
(
qkv_rank
,
attn_axes
):
"""Builds einsum equations for the attention computation.
Query, key, value inputs after projection are expected to have the shape as:
(bs, <non-attention dims>, <attention dims>, num_heads, channels).
bs and <non-attention dims> are treated as <batch dims>.
The attention operations can be generalized:
(1) Query-key dot product:
(<batch dims>, <query attention dims>, num_heads, channels), (<batch dims>,
<key attention dims>, num_heads, channels) -> (<batch dims>,
num_heads, <query attention dims>, <key attention dims>)
(2) Combination:
(<batch dims>, num_heads, <query attention dims>, <key attention dims>),
(<batch dims>, <value attention dims>, num_heads, channels) -> (<batch dims>,
<query attention dims>, num_heads, channels)
Args:
qkv_rank: the rank of query, key, value tensors.
attn_axes: a list/tuple of axes, [1, rank), that will do attention.
Returns:
Einsum equations.
"""
target_notation
=
_CHR_IDX
[:
qkv_rank
]
# `batch_dims` includes the head dim.
batch_dims
=
tuple
(
np
.
delete
(
range
(
qkv_rank
),
attn_axes
+
(
qkv_rank
-
1
,)))
letter_offset
=
qkv_rank
source_notation
=
""
for
i
in
range
(
qkv_rank
):
if
i
in
batch_dims
or
i
==
qkv_rank
-
1
:
source_notation
+=
target_notation
[
i
]
else
:
source_notation
+=
_CHR_IDX
[
letter_offset
]
letter_offset
+=
1
product_notation
=
""
.
join
([
target_notation
[
i
]
for
i
in
batch_dims
]
+
[
target_notation
[
i
]
for
i
in
attn_axes
]
+
[
source_notation
[
i
]
for
i
in
attn_axes
])
dot_product_equation
=
"%s,%s->%s"
%
(
source_notation
,
target_notation
,
product_notation
)
combine_equation
=
"%s,%s->%s"
%
(
product_notation
,
source_notation
,
target_notation
)
return
dot_product_equation
,
combine_equation
def
_build_proj_equation
(
free_dims
,
bound_dims
,
output_dims
):
"""Builds an einsum equation for projections inside multi-head attention."""
input_str
=
""
kernel_str
=
""
output_str
=
""
bias_axes
=
""
letter_offset
=
0
for
i
in
range
(
free_dims
):
char
=
_CHR_IDX
[
i
+
letter_offset
]
input_str
+=
char
output_str
+=
char
letter_offset
+=
free_dims
for
i
in
range
(
bound_dims
):
char
=
_CHR_IDX
[
i
+
letter_offset
]
input_str
+=
char
kernel_str
+=
char
letter_offset
+=
bound_dims
for
i
in
range
(
output_dims
):
char
=
_CHR_IDX
[
i
+
letter_offset
]
kernel_str
+=
char
output_str
+=
char
bias_axes
+=
char
equation
=
"%s,%s->%s"
%
(
input_str
,
kernel_str
,
output_str
)
# The output rank does not consider the batch dimension.
output_rank
=
len
(
output_str
)
-
1
return
equation
,
bias_axes
,
output_rank
def
_get_output_shape
(
output_rank
,
known_last_dims
):
return
[
None
]
*
(
output_rank
-
len
(
known_last_dims
))
+
list
(
known_last_dims
)
@
tf
.
keras
.
utils
.
register_keras_serializable
(
package
=
"Text"
)
@
tf
.
keras
.
utils
.
register_keras_serializable
(
package
=
"Text"
)
class
MultiHeadAttention
(
tf
.
keras
.
layers
.
Layer
):
class
MultiHeadAttention
(
tf
.
keras
.
layers
.
Layer
):
...
@@ -53,7 +140,7 @@ class MultiHeadAttention(tf.keras.layers.Layer):
...
@@ -53,7 +140,7 @@ class MultiHeadAttention(tf.keras.layers.Layer):
key_size: Size of each attention head for query and key.
key_size: Size of each attention head for query and key.
value_size: Size of each attention head for value.
value_size: Size of each attention head for value.
dropout: Dropout probability.
dropout: Dropout probability.
use_bias: Boolean, whether the dense layers use bias vectors.
use_bias: Boolean, whether the dense layers use bias vectors
/matrices
.
output_shape: The expected shape of an output tensor, besides the batch and
output_shape: The expected shape of an output tensor, besides the batch and
sequence dims. If not specified, projects back to the key feature dim.
sequence dims. If not specified, projects back to the key feature dim.
kernel_initializer: Initializer for dense layer kernels.
kernel_initializer: Initializer for dense layer kernels.
...
@@ -94,44 +181,7 @@ class MultiHeadAttention(tf.keras.layers.Layer):
...
@@ -94,44 +181,7 @@ class MultiHeadAttention(tf.keras.layers.Layer):
self
.
_kernel_constraint
=
tf
.
keras
.
constraints
.
get
(
kernel_constraint
)
self
.
_kernel_constraint
=
tf
.
keras
.
constraints
.
get
(
kernel_constraint
)
self
.
_bias_constraint
=
tf
.
keras
.
constraints
.
get
(
bias_constraint
)
self
.
_bias_constraint
=
tf
.
keras
.
constraints
.
get
(
bias_constraint
)
self
.
_query_dense
=
dense_einsum
.
DenseEinsum
(
output_shape
=
(
self
.
_num_heads
,
self
.
_key_size
),
use_bias
=
self
.
_use_bias
,
kernel_initializer
=
self
.
_kernel_initializer
,
bias_initializer
=
self
.
_bias_initializer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
,
activity_regularizer
=
self
.
_activity_regularizer
,
kernel_constraint
=
self
.
_kernel_constraint
,
bias_constraint
=
self
.
_bias_constraint
,
name
=
"query"
)
self
.
_key_dense
=
dense_einsum
.
DenseEinsum
(
output_shape
=
(
self
.
_num_heads
,
self
.
_key_size
),
use_bias
=
self
.
_use_bias
,
kernel_initializer
=
self
.
_kernel_initializer
,
bias_initializer
=
self
.
_bias_initializer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
,
activity_regularizer
=
self
.
_activity_regularizer
,
kernel_constraint
=
self
.
_kernel_constraint
,
bias_constraint
=
self
.
_bias_constraint
,
name
=
"key"
)
self
.
_value_dense
=
dense_einsum
.
DenseEinsum
(
output_shape
=
(
self
.
_num_heads
,
self
.
_value_size
),
use_bias
=
self
.
_use_bias
,
kernel_initializer
=
self
.
_kernel_initializer
,
bias_initializer
=
self
.
_bias_initializer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
,
activity_regularizer
=
self
.
_activity_regularizer
,
kernel_constraint
=
self
.
_kernel_constraint
,
bias_constraint
=
self
.
_bias_constraint
,
name
=
"value"
)
self
.
_masked_softmax
=
masked_softmax
.
MaskedSoftmax
(
mask_expansion_axes
=
[
1
])
self
.
_masked_softmax
=
masked_softmax
.
MaskedSoftmax
(
mask_expansion_axes
=
[
1
])
self
.
_dropout
=
tf
.
keras
.
layers
.
Dropout
(
rate
=
self
.
_dropout_rate
)
self
.
_dropout
=
tf
.
keras
.
layers
.
Dropout
(
rate
=
self
.
_dropout_rate
)
def
get_config
(
self
):
def
get_config
(
self
):
...
@@ -167,22 +217,72 @@ class MultiHeadAttention(tf.keras.layers.Layer):
...
@@ -167,22 +217,72 @@ class MultiHeadAttention(tf.keras.layers.Layer):
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
return
dict
(
list
(
base_config
.
items
())
+
list
(
config
.
items
()))
def
build
(
self
,
input_shape
):
def
build
(
self
,
input_shape
):
if
self
.
_output_shape
:
inputs_len
=
len
(
input_shape
)
output_shape
=
self
.
_output_shape
if
inputs_len
>
3
or
inputs_len
<
2
:
else
:
raise
ValueError
(
input_shape
=
tf
.
TensorShape
(
input_shape
[
0
])
"Expects inputs list of length 2 or 3, namely [query, value] or "
output_shape
=
input_shape
[
-
1
]
"[query, value, key]. "
self
.
_output_dense
=
dense_einsum
.
DenseEinsum
(
"Given length: %d"
%
inputs_len
)
output_shape
=
output_shape
,
tensor_shapes
=
tf
.
nest
.
map_structure
(
tf
.
TensorShape
,
input_shape
)
num_summed_dimensions
=
2
,
query_shape
=
tensor_shapes
[
0
]
value_shape
=
tensor_shapes
[
1
]
key_shape
=
tensor_shapes
[
2
]
if
inputs_len
==
3
else
value_shape
common_kwargs
=
dict
(
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
self
.
_kernel_initializer
,
bias_initializer
=
self
.
_bias_initializer
,
bias_initializer
=
self
.
_bias_initializer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
kernel_regularizer
=
self
.
_kernel_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
,
bias_regularizer
=
self
.
_bias_regularizer
,
activity_regularizer
=
self
.
_activity_regularizer
,
activity_regularizer
=
self
.
_activity_regularizer
,
kernel_constraint
=
self
.
_kernel_constraint
,
kernel_constraint
=
self
.
_kernel_constraint
,
bias_constraint
=
self
.
_bias_constraint
,
bias_constraint
=
self
.
_bias_constraint
)
name
=
"attention_output"
)
free_dims
=
query_shape
.
rank
-
1
einsum_equation
,
bias_axes
,
output_rank
=
_build_proj_equation
(
free_dims
,
bound_dims
=
1
,
output_dims
=
2
)
self
.
_query_dense
=
EinsumDense
(
einsum_equation
,
output_shape
=
_get_output_shape
(
output_rank
,
[
self
.
_num_heads
,
self
.
_key_size
]),
bias_axes
=
bias_axes
if
self
.
_use_bias
else
None
,
name
=
"query"
,
**
common_kwargs
)
einsum_equation
,
bias_axes
,
output_rank
=
_build_proj_equation
(
key_shape
.
rank
-
1
,
bound_dims
=
1
,
output_dims
=
2
)
self
.
_key_dense
=
EinsumDense
(
einsum_equation
,
output_shape
=
_get_output_shape
(
output_rank
,
[
self
.
_num_heads
,
self
.
_key_size
]),
bias_axes
=
bias_axes
if
self
.
_use_bias
else
None
,
name
=
"key"
,
**
common_kwargs
)
einsum_equation
,
bias_axes
,
output_rank
=
_build_proj_equation
(
value_shape
.
rank
-
1
,
bound_dims
=
1
,
output_dims
=
2
)
self
.
_value_dense
=
EinsumDense
(
einsum_equation
,
output_shape
=
_get_output_shape
(
output_rank
,
[
self
.
_num_heads
,
self
.
_value_size
]),
bias_axes
=
bias_axes
if
self
.
_use_bias
else
None
,
name
=
"value"
,
**
common_kwargs
)
self
.
_dot_product_equation
,
self
.
_combine_equation
=
(
_build_attention_equation
(
output_rank
+
1
,
attn_axes
=
(
1
,)))
if
self
.
_output_shape
:
if
not
isinstance
(
self
.
_output_shape
,
collections
.
abc
.
Sized
):
output_shape
=
[
self
.
_output_shape
]
else
:
output_shape
=
self
.
_output_shape
else
:
output_shape
=
[
query_shape
[
-
1
]]
einsum_equation
,
bias_axes
,
output_rank
=
_build_proj_equation
(
free_dims
,
bound_dims
=
2
,
output_dims
=
len
(
output_shape
))
self
.
_output_dense
=
EinsumDense
(
einsum_equation
,
output_shape
=
_get_output_shape
(
output_rank
,
output_shape
),
bias_axes
=
bias_axes
if
self
.
_use_bias
else
None
,
name
=
"attention_output"
,
**
common_kwargs
)
super
(
MultiHeadAttention
,
self
).
build
(
input_shape
)
super
(
MultiHeadAttention
,
self
).
build
(
input_shape
)
def
call
(
self
,
inputs
,
attention_mask
=
None
):
def
call
(
self
,
inputs
,
attention_mask
=
None
):
...
@@ -234,7 +334,8 @@ class MultiHeadAttention(tf.keras.layers.Layer):
...
@@ -234,7 +334,8 @@ class MultiHeadAttention(tf.keras.layers.Layer):
# Take the dot product between "query" and "key" to get the raw
# Take the dot product between "query" and "key" to get the raw
# attention scores.
# attention scores.
attention_scores
=
tf
.
einsum
(
"BSNH,BTNH->BNTS"
,
key_tensor
,
query_tensor
)
attention_scores
=
tf
.
einsum
(
self
.
_dot_product_equation
,
key_tensor
,
query_tensor
)
attention_scores
=
tf
.
multiply
(
attention_scores
,
attention_scores
=
tf
.
multiply
(
attention_scores
,
1.0
/
math
.
sqrt
(
float
(
self
.
_key_size
)))
1.0
/
math
.
sqrt
(
float
(
self
.
_key_size
)))
...
@@ -247,7 +348,7 @@ class MultiHeadAttention(tf.keras.layers.Layer):
...
@@ -247,7 +348,7 @@ class MultiHeadAttention(tf.keras.layers.Layer):
attention_probs
=
self
.
_dropout
(
attention_probs
)
attention_probs
=
self
.
_dropout
(
attention_probs
)
# `context_layer` = [B, T, N, H]
# `context_layer` = [B, T, N, H]
attention_output
=
tf
.
einsum
(
"BNTS,BSNH->BTNH"
,
attention_probs
,
attention_output
=
tf
.
einsum
(
self
.
_combine_equation
,
attention_probs
,
value_tensor
)
value_tensor
)
attention_output
=
self
.
_output_dense
(
attention_output
)
attention_output
=
self
.
_output_dense
(
attention_output
)
...
@@ -288,11 +389,14 @@ class CachedAttention(MultiHeadAttention):
...
@@ -288,11 +389,14 @@ class CachedAttention(MultiHeadAttention):
return
key_tensor
,
value_tensor
return
key_tensor
,
value_tensor
def
call
(
self
,
inputs
,
decode_loop_step
=
None
):
def
call
(
self
,
inputs
,
attention_mask
=
None
,
cache
=
None
,
decode_loop_step
=
None
):
from_tensor
=
inputs
[
0
]
from_tensor
=
inputs
[
0
]
to_tensor
=
inputs
[
1
]
to_tensor
=
inputs
[
1
]
attention_mask
=
inputs
[
2
]
if
len
(
inputs
)
>=
3
else
None
cache
=
inputs
[
3
]
if
len
(
inputs
)
>=
4
else
None
# Scalar dimensions referenced here:
# Scalar dimensions referenced here:
# B = batch size (number of sequences)
# B = batch size (number of sequences)
# F = `from_tensor` sequence length
# F = `from_tensor` sequence length
...
@@ -314,7 +418,8 @@ class CachedAttention(MultiHeadAttention):
...
@@ -314,7 +418,8 @@ class CachedAttention(MultiHeadAttention):
# Take the dot product between "query" and "key" to get the raw
# Take the dot product between "query" and "key" to get the raw
# attention scores.
# attention scores.
attention_scores
=
tf
.
einsum
(
"BTNH,BFNH->BNFT"
,
key_tensor
,
query_tensor
)
attention_scores
=
tf
.
einsum
(
self
.
_dot_product_equation
,
key_tensor
,
query_tensor
)
attention_scores
=
tf
.
multiply
(
attention_scores
,
attention_scores
=
tf
.
multiply
(
attention_scores
,
1.0
/
math
.
sqrt
(
float
(
self
.
_key_size
)))
1.0
/
math
.
sqrt
(
float
(
self
.
_key_size
)))
...
@@ -326,7 +431,7 @@ class CachedAttention(MultiHeadAttention):
...
@@ -326,7 +431,7 @@ class CachedAttention(MultiHeadAttention):
# seem a bit unusual, but is taken from the original Transformer paper.
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs
=
self
.
_dropout
(
attention_probs
)
attention_probs
=
self
.
_dropout
(
attention_probs
)
# `context_layer` = [B, F, N, H]
# `context_layer` = [B, F, N, H]
attention_output
=
tf
.
einsum
(
"BNFT,BTNH->BFNH"
,
attention_probs
,
attention_output
=
tf
.
einsum
(
self
.
_combine_equation
,
attention_probs
,
value_tensor
)
value_tensor
)
attention_output
=
self
.
_output_dense
(
attention_output
)
attention_output
=
self
.
_output_dense
(
attention_output
)
return
attention_output
,
cache
return
attention_output
,
cache
official/nlp/modeling/layers/attention_test.py
View file @
09c5ae2f
...
@@ -99,6 +99,13 @@ class MultiHeadAttentionTest(keras_parameterized.TestCase):
...
@@ -99,6 +99,13 @@ class MultiHeadAttentionTest(keras_parameterized.TestCase):
# same.
# same.
self
.
assertNotAllClose
(
masked_output_data
,
unmasked_output_data
)
self
.
assertNotAllClose
(
masked_output_data
,
unmasked_output_data
)
if
use_bias
:
self
.
assertLen
(
test_layer
.
_query_dense
.
trainable_variables
,
2
)
self
.
assertLen
(
test_layer
.
_output_dense
.
trainable_variables
,
2
)
else
:
self
.
assertLen
(
test_layer
.
_query_dense
.
trainable_variables
,
1
)
self
.
assertLen
(
test_layer
.
_output_dense
.
trainable_variables
,
1
)
def
test_initializer
(
self
):
def
test_initializer
(
self
):
"""Test with a specified initializer."""
"""Test with a specified initializer."""
test_layer
=
attention
.
MultiHeadAttention
(
test_layer
=
attention
.
MultiHeadAttention
(
...
@@ -143,7 +150,7 @@ class CachedAttentionTest(keras_parameterized.TestCase):
...
@@ -143,7 +150,7 @@ class CachedAttentionTest(keras_parameterized.TestCase):
# one element.
# one element.
mask_data
=
np
.
random
.
randint
(
mask_data
=
np
.
random
.
randint
(
2
,
size
=
(
batch_size
,
from_seq_length
,
from_seq_length
))
2
,
size
=
(
batch_size
,
from_seq_length
,
from_seq_length
))
masked_output_data
,
cache
=
layer
([
from_data
,
from_data
,
mask_data
,
cache
]
)
masked_output_data
,
cache
=
layer
([
from_data
,
from_data
]
,
mask_data
,
cache
)
self
.
assertEqual
(
masked_output_data
.
shape
,
(
3
,
4
,
8
))
self
.
assertEqual
(
masked_output_data
.
shape
,
(
3
,
4
,
8
))
self
.
assertEqual
(
cache
[
"value"
].
shape
,
(
3
,
4
,
2
,
2
))
self
.
assertEqual
(
cache
[
"value"
].
shape
,
(
3
,
4
,
2
,
2
))
...
@@ -170,7 +177,9 @@ class CachedAttentionTest(keras_parameterized.TestCase):
...
@@ -170,7 +177,9 @@ class CachedAttentionTest(keras_parameterized.TestCase):
mask_data
=
np
.
random
.
randint
(
mask_data
=
np
.
random
.
randint
(
2
,
size
=
(
batch_size
,
from_seq_length
,
from_seq_length
),
dtype
=
np
.
int32
)
2
,
size
=
(
batch_size
,
from_seq_length
,
from_seq_length
),
dtype
=
np
.
int32
)
# Testing the invocation directly as Keras cannot consume inputs correctly.
# Testing the invocation directly as Keras cannot consume inputs correctly.
masked_output_data
,
cache
=
layer
([
from_data
,
from_data
,
mask_data
,
cache
],
masked_output_data
,
cache
=
layer
([
from_data
,
from_data
],
mask_data
,
cache
,
decode_loop_step
=
decode_loop_step
)
decode_loop_step
=
decode_loop_step
)
self
.
assertEqual
(
masked_output_data
.
shape
,
(
3
,
4
,
8
))
self
.
assertEqual
(
masked_output_data
.
shape
,
(
3
,
4
,
8
))
self
.
assertEqual
(
cache
[
"value"
].
shape
,
(
3
,
4
,
2
,
2
))
self
.
assertEqual
(
cache
[
"value"
].
shape
,
(
3
,
4
,
2
,
2
))
...
...
official/nlp/modeling/layers/transformer.py
View file @
09c5ae2f
...
@@ -116,10 +116,6 @@ class Transformer(tf.keras.layers.Layer):
...
@@ -116,10 +116,6 @@ class Transformer(tf.keras.layers.Layer):
kernel_constraint
=
self
.
_kernel_constraint
,
kernel_constraint
=
self
.
_kernel_constraint
,
bias_constraint
=
self
.
_bias_constraint
,
bias_constraint
=
self
.
_bias_constraint
,
name
=
"self_attention"
)
name
=
"self_attention"
)
# TODO(hongkuny): Remove when checkpoint backward compatibility is resolved.
# pylint: disable=protected-access
self
.
_attention_layer
.
build
([
input_tensor_shape
])
self
.
_attention_output_dense
=
self
.
_attention_layer
.
_output_dense
self
.
_attention_dropout
=
tf
.
keras
.
layers
.
Dropout
(
rate
=
self
.
_dropout_rate
)
self
.
_attention_dropout
=
tf
.
keras
.
layers
.
Dropout
(
rate
=
self
.
_dropout_rate
)
# Use float32 in layernorm for numeric stability.
# Use float32 in layernorm for numeric stability.
...
...
official/nlp/nhnet/decoder.py
View file @
09c5ae2f
...
@@ -95,12 +95,6 @@ class TransformerDecoderBlock(tf.keras.layers.Layer):
...
@@ -95,12 +95,6 @@ class TransformerDecoderBlock(tf.keras.layers.Layer):
output_shape
=
self
.
hidden_size
,
output_shape
=
self
.
hidden_size
,
kernel_initializer
=
self
.
_kernel_initializer
,
kernel_initializer
=
self
.
_kernel_initializer
,
name
=
"attention/encdec"
)
name
=
"attention/encdec"
)
# TODO(hongkuny): Remove when checkpoint backward compatibility is resolved.
# pylint: disable=protected-access
self
.
self_attention
.
build
(
input_shape
)
self
.
self_attention_output_dense
=
self
.
self_attention
.
_output_dense
self
.
encdec_attention
.
build
(
input_shape
)
self
.
encdec_attention_output_dense
=
self
.
encdec_attention
.
_output_dense
self
.
encdec_attention_dropout
=
tf
.
keras
.
layers
.
Dropout
(
self
.
encdec_attention_dropout
=
tf
.
keras
.
layers
.
Dropout
(
rate
=
self
.
hidden_dropout_prob
)
rate
=
self
.
hidden_dropout_prob
)
...
@@ -145,14 +139,12 @@ class TransformerDecoderBlock(tf.keras.layers.Layer):
...
@@ -145,14 +139,12 @@ class TransformerDecoderBlock(tf.keras.layers.Layer):
"TransformerDecoderBlock must have 4 inputs, but it got: %d"
%
"TransformerDecoderBlock must have 4 inputs, but it got: %d"
%
len
(
inputs
))
len
(
inputs
))
input_tensor
,
memory
,
attention_mask
,
self_attention_mask
=
inputs
[:
4
]
input_tensor
,
memory
,
attention_mask
,
self_attention_mask
=
inputs
[:
4
]
if
cache
is
None
:
self_attention_inputs
=
[
input_tensor
,
input_tensor
]
self_attention_inputs
=
[
input_tensor
,
input_tensor
,
self_attention_mask
]
else
:
self_attention_inputs
=
[
input_tensor
,
input_tensor
,
self_attention_mask
,
cache
]
self_attention_output
,
cache
=
self
.
self_attention
(
self_attention_output
,
cache
=
self
.
self_attention
(
self_attention_inputs
,
decode_loop_step
=
decode_loop_step
)
self_attention_inputs
,
attention_mask
=
self_attention_mask
,
cache
=
cache
,
decode_loop_step
=
decode_loop_step
)
self_attention_output
=
self
.
self_attention_dropout
(
self_attention_output
)
self_attention_output
=
self
.
self_attention_dropout
(
self_attention_output
)
self_attention_output
=
self
.
self_attention_layer_norm
(
self_attention_output
=
self
.
self_attention_layer_norm
(
input_tensor
+
self_attention_output
)
input_tensor
+
self_attention_output
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment