Commit 020efa74 authored by cclauss's avatar cclauss
Browse files

CogMap: Fix five undefined names

parent 0f2fc58d
...@@ -16,7 +16,8 @@ ...@@ -16,7 +16,8 @@
"""Utilities for processing depth images. """Utilities for processing depth images.
""" """
import numpy as np import numpy as np
import src.rotation_utils as ru import src.rotation_utils as ru
import src.utils as utils
def get_camera_matrix(width, height, fov): def get_camera_matrix(width, height, fov):
"""Returns a camera matrix from image size and fov.""" """Returns a camera matrix from image size and fov."""
......
...@@ -34,7 +34,7 @@ def write_image(image_path, rgb): ...@@ -34,7 +34,7 @@ def write_image(image_path, rgb):
f.write(img_str) f.write(img_str)
def read_image(image_path, type='rgb'): def read_image(image_path, type='rgb'):
with fopen(file_name, 'r') as f: with fopen(image_path, 'r') as f:
I = PIL.Image.open(f) I = PIL.Image.open(f)
II = np.array(I) II = np.array(I)
if type == 'rgb': if type == 'rgb':
......
...@@ -20,19 +20,20 @@ import numpy as np ...@@ -20,19 +20,20 @@ import numpy as np
import networkx as nx import networkx as nx
import itertools import itertools
import logging import logging
from datasets.nav_env import get_path_ids
import graph_tool as gt import graph_tool as gt
import graph_tool.topology import graph_tool.topology
import graph_tool.generation import graph_tool.generation
import src.utils as utils import src.utils as utils
# Compute shortest path from all nodes to or from all source nodes # Compute shortest path from all nodes to or from all source nodes
def get_distance_node_list(gtG, source_nodes, direction, weights=None): def get_distance_node_list(gtG, source_nodes, direction, weights=None):
gtG_ = gt.Graph(gtG) gtG_ = gt.Graph(gtG)
v = gtG_.add_vertex() v = gtG_.add_vertex()
if weights is not None: if weights is not None:
weights = gtG_.edge_properties[weights] weights = gtG_.edge_properties[weights]
for s in source_nodes: for s in source_nodes:
e = gtG_.add_edge(s, int(v)) e = gtG_.add_edge(s, int(v))
if weights is not None: if weights is not None:
...@@ -110,12 +111,12 @@ def convert_traversible_to_graph(traversible, ff_cost=1., fo_cost=1., ...@@ -110,12 +111,12 @@ def convert_traversible_to_graph(traversible, ff_cost=1., fo_cost=1.,
for i, e in enumerate(g.edges()): for i, e in enumerate(g.edges()):
edge_wts[e] = edge_wts[e] * wts[i] edge_wts[e] = edge_wts[e] * wts[i]
# d = edge_wts.get_array()*1. # d = edge_wts.get_array()*1.
# edge_wts.get_array()[:] = d*wts # edge_wts.get_array()[:] = d*wts
return g, nodes return g, nodes
def label_nodes_with_class(nodes_xyt, class_maps, pix): def label_nodes_with_class(nodes_xyt, class_maps, pix):
""" """
Returns: Returns:
class_maps__: one-hot class_map for each class. class_maps__: one-hot class_map for each class.
node_class_label: one-hot class_map for each class, nodes_xyt.shape[0] x n_classes node_class_label: one-hot class_map for each class, nodes_xyt.shape[0] x n_classes
""" """
...@@ -137,7 +138,7 @@ def label_nodes_with_class(nodes_xyt, class_maps, pix): ...@@ -137,7 +138,7 @@ def label_nodes_with_class(nodes_xyt, class_maps, pix):
class_maps_one_hot = np.zeros(class_maps.shape, dtype=np.bool) class_maps_one_hot = np.zeros(class_maps.shape, dtype=np.bool)
node_class_label_one_hot = np.zeros((node_class_label.shape[0], class_maps.shape[2]), dtype=np.bool) node_class_label_one_hot = np.zeros((node_class_label.shape[0], class_maps.shape[2]), dtype=np.bool)
for i in range(class_maps.shape[2]): for i in range(class_maps.shape[2]):
class_maps_one_hot[:,:,i] = class_maps__ == i class_maps_one_hot[:,:,i] = class_maps__ == i
node_class_label_one_hot[:,i] = node_class_label == i node_class_label_one_hot[:,i] = node_class_label == i
return class_maps_one_hot, node_class_label_one_hot return class_maps_one_hot, node_class_label_one_hot
...@@ -468,7 +469,7 @@ def rng_next_goal(start_node_ids, batch_size, gtG, rng, max_dist, ...@@ -468,7 +469,7 @@ def rng_next_goal(start_node_ids, batch_size, gtG, rng, max_dist,
if compute_path: if compute_path:
path = get_path_ids(start_node_ids[i], end_node_ids[i], pred_map) path = get_path_ids(start_node_ids[i], end_node_ids[i], pred_map)
paths.append(path) paths.append(path)
return start_node_ids, end_node_ids, dists, pred_maps, paths return start_node_ids, end_node_ids, dists, pred_maps, paths
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment