rollout.py 13.8 KB
Newer Older
Andrew M. Dai's avatar
Andrew M. Dai committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Rollout RNN model definitions which call rnn_zaremba code."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections

24
from six.moves import xrange
Andrew M. Dai's avatar
Andrew M. Dai committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import tensorflow as tf

from losses import losses
from model_utils import helper
from model_utils import model_construction
from model_utils import model_losses
from model_utils import model_optimization

FLAGS = tf.app.flags.FLAGS


def create_rollout_MaskGAN(hparams, is_training):
  """Create the MaskGAN model.

  Args:
    hparams:  Hyperparameters for the MaskGAN.
    is_training:  Boolean indicating operational mode (train/inference).
      evaluated with a teacher forcing regime.

  Return:
    model:  Namedtuple for specifying the MaskGAN."""
  global_step = tf.Variable(0, name='global_step', trainable=False)

  new_learning_rate = tf.placeholder(tf.float32, [], name='new_learning_rate')
  learning_rate = tf.Variable(0.0, name='learning_rate', trainable=False)
  learning_rate_update = tf.assign(learning_rate, new_learning_rate)

  new_rate = tf.placeholder(tf.float32, [], name='new_rate')
  percent_real_var = tf.Variable(0.0, trainable=False)
  percent_real_update = tf.assign(percent_real_var, new_rate)

  ## Placeholders.
  inputs = tf.placeholder(
      tf.int32, shape=[FLAGS.batch_size, FLAGS.sequence_length])
  present = tf.placeholder(
      tf.bool, shape=[FLAGS.batch_size, FLAGS.sequence_length])
  inv_present = tf.placeholder(
      tf.bool, shape=[FLAGS.batch_size, FLAGS.sequence_length])

  ## Rollout Generator.
  fwd_gen_rollouts = rollout_generator(
      hparams, inputs, present, is_training=is_training, is_validating=False)
  inv_gen_rollouts = rollout_generator(
      hparams,
      inputs,
      inv_present,
      is_training=is_training,
      is_validating=False,
      reuse=True)

  ## Rollout Discriminator.
  fwd_dis_rollouts = rollout_discriminator(
      hparams, fwd_gen_rollouts, is_training=is_training)
  inv_dis_rollouts = rollout_discriminator(
      hparams, inv_gen_rollouts, is_training=is_training, reuse=True)

  ## Discriminator Loss.
  [dis_loss, dis_loss_pred, dis_loss_inv_pred] = rollout_discriminator_loss(
      fwd_dis_rollouts, present, inv_dis_rollouts, inv_present)

  ## Average log-perplexity for only missing words.  However, to do this,
  # the logits are still computed using teacher forcing, that is, the ground
  # truth tokens are fed in at each time point to be valid.
  # TODO(liamfedus): Fix the naming convention.
  with tf.variable_scope('gen_rollout'):
    _, fwd_eval_logits, _ = model_construction.create_generator(
        hparams,
        inputs,
        present,
        is_training=False,
        is_validating=True,
        reuse=True)

  avg_log_perplexity = model_losses.calculate_log_perplexity(
      fwd_eval_logits, inputs, present)

  ## Generator Loss.
  # 1.  Cross Entropy losses on missing tokens.
  [fwd_cross_entropy_losses,
   inv_cross_entropy_losses] = rollout_masked_cross_entropy_loss(
       inputs, present, inv_present, fwd_gen_rollouts, inv_gen_rollouts)

  # 2.  GAN losses on missing tokens.
  [fwd_RL_loss,
   fwd_RL_statistics, fwd_averages_op] = rollout_reinforce_objective(
       hparams, fwd_gen_rollouts, fwd_dis_rollouts, present)
  [inv_RL_loss,
   inv_RL_statistics, inv_averages_op] = rollout_reinforce_objective(
       hparams, inv_gen_rollouts, inv_dis_rollouts, inv_present)

  # TODO(liamfedus):  Generalize this to use all logs.
  [fwd_sequence, fwd_logits, fwd_log_probs] = fwd_gen_rollouts[-1]
  [inv_sequence, inv_logits, inv_log_probs] = inv_gen_rollouts[-1]

  # TODO(liamfedus):  Generalize this to use all logs.
  fwd_predictions = fwd_dis_rollouts[-1]
  inv_predictions = inv_dis_rollouts[-1]

  # TODO(liamfedus):  Generalize this to use all logs.
  [fwd_log_probs, fwd_rewards, fwd_advantages,
   fwd_baselines] = fwd_RL_statistics[-1]
  [inv_log_probs, inv_rewards, inv_advantages,
   inv_baselines] = inv_RL_statistics[-1]

  ## Pre-training.
  if FLAGS.gen_pretrain_steps:
    # TODO(liamfedus): Rewrite this.
    fwd_cross_entropy_loss = tf.reduce_mean(fwd_cross_entropy_losses)
    gen_pretrain_op = model_optimization.create_gen_pretrain_op(
        hparams, fwd_cross_entropy_loss, global_step)
  else:
    gen_pretrain_op = tf.no_op('gen_pretrain_no_op')
  if FLAGS.dis_pretrain_steps:
    dis_pretrain_op = model_optimization.create_dis_pretrain_op(
        hparams, dis_loss, global_step)
  else:
    dis_pretrain_op = tf.no_op('dis_pretrain_no_op')

  ##  Generator Train Op.
  # 1.  Cross-Entropy.
  if FLAGS.gen_training_strategy == 'cross_entropy':
    gen_loss = tf.reduce_mean(
        fwd_cross_entropy_losses + inv_cross_entropy_losses) / 2.
    [gen_train_op, gen_grads,
     gen_vars] = model_optimization.create_gen_train_op(
         hparams, learning_rate, gen_loss, global_step, mode='MINIMIZE')

  # 2.  GAN (REINFORCE)
  elif FLAGS.gen_training_strategy == 'reinforce':
    gen_loss = (fwd_RL_loss + inv_RL_loss) / 2.
    [gen_train_op, gen_grads,
     gen_vars] = model_optimization.create_reinforce_gen_train_op(
         hparams, learning_rate, gen_loss, fwd_averages_op, inv_averages_op,
         global_step)

  else:
    raise NotImplementedError

  ## Discriminator Train Op.
  dis_train_op, dis_grads, dis_vars = model_optimization.create_dis_train_op(
      hparams, dis_loss, global_step)

  ## Summaries.
  with tf.name_scope('general'):
    tf.summary.scalar('percent_real', percent_real_var)
    tf.summary.scalar('learning_rate', learning_rate)

  with tf.name_scope('generator_losses'):
    tf.summary.scalar('gen_loss', tf.reduce_mean(gen_loss))
    tf.summary.scalar('gen_loss_fwd_cross_entropy',
                      tf.reduce_mean(fwd_cross_entropy_losses))
    tf.summary.scalar('gen_loss_inv_cross_entropy',
                      tf.reduce_mean(inv_cross_entropy_losses))

  with tf.name_scope('REINFORCE'):
    with tf.name_scope('objective'):
      tf.summary.scalar('fwd_RL_loss', tf.reduce_mean(fwd_RL_loss))
      tf.summary.scalar('inv_RL_loss', tf.reduce_mean(inv_RL_loss))

    with tf.name_scope('rewards'):
      helper.variable_summaries(fwd_rewards, 'fwd_rewards')
      helper.variable_summaries(inv_rewards, 'inv_rewards')

    with tf.name_scope('advantages'):
      helper.variable_summaries(fwd_advantages, 'fwd_advantages')
      helper.variable_summaries(inv_advantages, 'inv_advantages')

    with tf.name_scope('baselines'):
      helper.variable_summaries(fwd_baselines, 'fwd_baselines')
      helper.variable_summaries(inv_baselines, 'inv_baselines')

    with tf.name_scope('log_probs'):
      helper.variable_summaries(fwd_log_probs, 'fwd_log_probs')
      helper.variable_summaries(inv_log_probs, 'inv_log_probs')

  with tf.name_scope('discriminator_losses'):
    tf.summary.scalar('dis_loss', dis_loss)
    tf.summary.scalar('dis_loss_fwd_sequence', dis_loss_pred)
    tf.summary.scalar('dis_loss_inv_sequence', dis_loss_inv_pred)

  with tf.name_scope('logits'):
    helper.variable_summaries(fwd_logits, 'fwd_logits')
    helper.variable_summaries(inv_logits, 'inv_logits')

  for v, g in zip(gen_vars, gen_grads):
    helper.variable_summaries(v, v.op.name)
    helper.variable_summaries(g, 'grad/' + v.op.name)

  for v, g in zip(dis_vars, dis_grads):
    helper.variable_summaries(v, v.op.name)
    helper.variable_summaries(g, 'grad/' + v.op.name)

  merge_summaries_op = tf.summary.merge_all()

  # Model saver.
  saver = tf.train.Saver(keep_checkpoint_every_n_hours=1, max_to_keep=5)

  # Named tuple that captures elements of the MaskGAN model.
  Model = collections.namedtuple('Model', [
      'inputs', 'present', 'inv_present', 'percent_real_update', 'new_rate',
      'fwd_sequence', 'fwd_logits', 'fwd_rewards', 'fwd_advantages',
      'fwd_log_probs', 'fwd_predictions', 'fwd_cross_entropy_losses',
      'inv_sequence', 'inv_logits', 'inv_rewards', 'inv_advantages',
      'inv_log_probs', 'inv_predictions', 'inv_cross_entropy_losses',
      'avg_log_perplexity', 'dis_loss', 'gen_loss', 'dis_train_op',
      'gen_train_op', 'gen_pretrain_op', 'dis_pretrain_op',
      'merge_summaries_op', 'global_step', 'new_learning_rate',
      'learning_rate_update', 'saver'
  ])

  model = Model(
      inputs, present, inv_present, percent_real_update, new_rate, fwd_sequence,
      fwd_logits, fwd_rewards, fwd_advantages, fwd_log_probs, fwd_predictions,
      fwd_cross_entropy_losses, inv_sequence, inv_logits, inv_rewards,
      inv_advantages, inv_log_probs, inv_predictions, inv_cross_entropy_losses,
      avg_log_perplexity, dis_loss, gen_loss, dis_train_op, gen_train_op,
      gen_pretrain_op, dis_pretrain_op, merge_summaries_op, global_step,
      new_learning_rate, learning_rate_update, saver)
  return model


def rollout_generator(hparams,
                      inputs,
                      input_present,
                      is_training,
                      is_validating,
                      reuse=None):
  """Define the Generator graph which does rollouts.

    G will now impute tokens that have been masked from the input seqeunce.
  """
  rollouts = []

  with tf.variable_scope('gen_rollout'):
    for n in xrange(FLAGS.num_rollouts):
      if n > 0:
        # TODO(liamfedus): Why is it necessary here to manually set reuse?
        reuse = True
        tf.get_variable_scope().reuse_variables()

      [sequence, logits, log_probs] = model_construction.create_generator(
          hparams,
          inputs,
          input_present,
          is_training,
          is_validating,
          reuse=reuse)

      rollouts.append([sequence, logits, log_probs])

  # Length assertion.
  assert len(rollouts) == FLAGS.num_rollouts

  return rollouts


def rollout_discriminator(hparams, gen_rollouts, is_training, reuse=None):
  """Define the Discriminator graph which does rollouts.

    G will now impute tokens that have been masked from the input seqeunce.
  """
  rollout_predictions = []

  with tf.variable_scope('dis_rollout'):
    for n, rollout in enumerate(gen_rollouts):
      if n > 0:
        # TODO(liamfedus): Why is it necessary here to manually set reuse?
        reuse = True
        tf.get_variable_scope().reuse_variables()

      [sequence, _, _] = rollout

      predictions = model_construction.create_discriminator(
          hparams, sequence, is_training=is_training, reuse=reuse)

      # Predictions for each rollout.
      rollout_predictions.append(predictions)

  # Length assertion.
  assert len(rollout_predictions) == FLAGS.num_rollouts

  return rollout_predictions


def rollout_reinforce_objective(hparams, gen_rollouts, dis_rollouts, present):
  cumulative_gen_objective = 0.
  cumulative_averages_op = []
  cumulative_statistics = []

  assert len(gen_rollouts) == len(dis_rollouts)

  for gen_rollout, dis_rollout in zip(gen_rollouts, dis_rollouts):
    [_, _, log_probs] = gen_rollout
    dis_predictions = dis_rollout

    [
        final_gen_objective, log_probs, rewards, advantages, baselines,
        maintain_averages_op
    ] = model_losses.calculate_reinforce_objective(hparams, log_probs,
                                                   dis_predictions, present)

    # Accumulate results.
    cumulative_gen_objective += final_gen_objective
    cumulative_averages_op.append(maintain_averages_op)
    cumulative_statistics.append([log_probs, rewards, advantages, baselines])

  # Group all the averaging operations.
  cumulative_averages_op = tf.group(*cumulative_averages_op)
  cumulative_gen_objective /= FLAGS.num_rollouts
  [log_probs, rewards, advantages, baselines] = cumulative_statistics[-1]

  # Length assertion.
  assert len(cumulative_statistics) == FLAGS.num_rollouts

  return [
      cumulative_gen_objective, cumulative_statistics, cumulative_averages_op
  ]


def rollout_masked_cross_entropy_loss(inputs, present, inv_present,
                                      fwd_rollouts, inv_rollouts):
  cumulative_fwd_cross_entropy_losses = tf.zeros(
      shape=[FLAGS.batch_size, FLAGS.sequence_length])
  cumulative_inv_cross_entropy_losses = tf.zeros(
      shape=[FLAGS.batch_size, FLAGS.sequence_length])

  for fwd_rollout, inv_rollout in zip(fwd_rollouts, inv_rollouts):
    [_, fwd_logits, _] = fwd_rollout
    [_, inv_logits, _] = inv_rollout

    [fwd_cross_entropy_losses,
     inv_cross_entropy_losses] = model_losses.create_masked_cross_entropy_loss(
         inputs, present, inv_present, fwd_logits, inv_logits)

    cumulative_fwd_cross_entropy_losses = tf.add(
        cumulative_fwd_cross_entropy_losses, fwd_cross_entropy_losses)
    cumulative_inv_cross_entropy_losses = tf.add(
        cumulative_inv_cross_entropy_losses, inv_cross_entropy_losses)

  return [
      cumulative_fwd_cross_entropy_losses, cumulative_inv_cross_entropy_losses
  ]


def rollout_discriminator_loss(fwd_rollouts, present, inv_rollouts,
                               inv_present):

  dis_loss = 0
  dis_loss_pred = 0
  dis_loss_inv_pred = 0

  for fwd_predictions, inv_predictions in zip(fwd_rollouts, inv_rollouts):
    dis_loss_pred += losses.discriminator_loss(fwd_predictions, present)
    dis_loss_inv_pred += losses.discriminator_loss(inv_predictions, inv_present)

  dis_loss_pred /= FLAGS.num_rollouts
  dis_loss_inv_pred /= FLAGS.num_rollouts

  dis_loss = (dis_loss_pred + dis_loss_inv_pred) / 2.
  return [dis_loss, dis_loss_pred, dis_loss_inv_pred]