rnn_nas.py 7.91 KB
Newer Older
Andrew M. Dai's avatar
Andrew M. Dai committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Simple RNN model definitions."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
23
from six.moves import xrange
Andrew M. Dai's avatar
Andrew M. Dai committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import tensorflow as tf

# NAS Code..
from nas_utils import configs
from nas_utils import custom_cell
from nas_utils import variational_dropout

FLAGS = tf.app.flags.FLAGS


def get_config():
  return configs.AlienConfig2()


LSTMTuple = collections.namedtuple('LSTMTuple', ['c', 'h'])


def generator(hparams,
              inputs,
              targets,
              targets_present,
              is_training,
              is_validating,
              reuse=None):
  """Define the Generator graph.

    G will now impute tokens that have been masked from the input seqeunce.
  """
  tf.logging.info(
      'Undirectional generative model is not a useful model for this MaskGAN '
      'because future context is needed.  Use only for debugging purposes.')
  config = get_config()
  config.keep_prob = [hparams.gen_nas_keep_prob_0, hparams.gen_nas_keep_prob_1]
  configs.print_config(config)

  init_scale = config.init_scale
  initializer = tf.random_uniform_initializer(-init_scale, init_scale)

  with tf.variable_scope('gen', reuse=reuse, initializer=initializer):
    # Neural architecture search cell.
    cell = custom_cell.Alien(config.hidden_size)

    if is_training:
      [h2h_masks, _, _,
       output_mask] = variational_dropout.generate_variational_dropout_masks(
           hparams, config.keep_prob)
    else:
      output_mask = None

    cell_gen = custom_cell.GenericMultiRNNCell([cell] * config.num_layers)
    initial_state = cell_gen.zero_state(FLAGS.batch_size, tf.float32)

    with tf.variable_scope('rnn'):
      sequence, logits, log_probs = [], [], []
      embedding = tf.get_variable('embedding',
                                  [FLAGS.vocab_size, hparams.gen_rnn_size])
      softmax_w = tf.matrix_transpose(embedding)
      softmax_b = tf.get_variable('softmax_b', [FLAGS.vocab_size])

      rnn_inputs = tf.nn.embedding_lookup(embedding, inputs)

      if is_training and FLAGS.keep_prob < 1:
        rnn_inputs = tf.nn.dropout(rnn_inputs, FLAGS.keep_prob)

      for t in xrange(FLAGS.sequence_length):
        if t > 0:
          tf.get_variable_scope().reuse_variables()

        # Input to the model is the first token to provide context.  The
        # model will then predict token t > 0.
        if t == 0:
          # Always provide the real input at t = 0.
          state_gen = initial_state
          rnn_inp = rnn_inputs[:, t]

        # If the input is present, read in the input at t.
        # If the input is not present, read in the previously generated.
        else:
          real_rnn_inp = rnn_inputs[:, t]
          fake_rnn_inp = tf.nn.embedding_lookup(embedding, fake)

          # While validating, the decoder should be operating in teacher
          # forcing regime.  Also, if we're just training with cross_entropy
          # use teacher forcing.
          if is_validating or (is_training and
                               FLAGS.gen_training_strategy == 'cross_entropy'):
            rnn_inp = real_rnn_inp
          else:
            rnn_inp = tf.where(targets_present[:, t - 1], real_rnn_inp,
                               fake_rnn_inp)

        if is_training:
          state_gen = list(state_gen)
          for layer_num, per_layer_state in enumerate(state_gen):
            per_layer_state = LSTMTuple(
                per_layer_state[0], per_layer_state[1] * h2h_masks[layer_num])
            state_gen[layer_num] = per_layer_state

        # RNN.
        rnn_out, state_gen = cell_gen(rnn_inp, state_gen)

        if is_training:
          rnn_out = output_mask * rnn_out

        logit = tf.matmul(rnn_out, softmax_w) + softmax_b

        # Real sample.
        real = targets[:, t]

        categorical = tf.contrib.distributions.Categorical(logits=logit)
        fake = categorical.sample()
        log_prob = categorical.log_prob(fake)

        # Output for Generator will either be generated or the input.
        #
        # If present:   Return real.
        # If not present:  Return fake.
        output = tf.where(targets_present[:, t], real, fake)

        # Add to lists.
        sequence.append(output)
        log_probs.append(log_prob)
        logits.append(logit)

      # Produce the RNN state had the model operated only
      # over real data.
      real_state_gen = initial_state
      for t in xrange(FLAGS.sequence_length):
        tf.get_variable_scope().reuse_variables()

        rnn_inp = rnn_inputs[:, t]

        # RNN.
        rnn_out, real_state_gen = cell_gen(rnn_inp, real_state_gen)

      final_state = real_state_gen

  return (tf.stack(sequence, axis=1), tf.stack(logits, axis=1), tf.stack(
      log_probs, axis=1), initial_state, final_state)


def discriminator(hparams, sequence, is_training, reuse=None):
  """Define the Discriminator graph."""
  tf.logging.info(
      'Undirectional Discriminative model is not a useful model for this '
      'MaskGAN because future context is needed.  Use only for debugging '
      'purposes.')
  sequence = tf.cast(sequence, tf.int32)

  if FLAGS.dis_share_embedding:
    assert hparams.dis_rnn_size == hparams.gen_rnn_size, (
        'If you wish to share Discriminator/Generator embeddings, they must be'
        ' same dimension.')
    with tf.variable_scope('gen/rnn', reuse=True):
      embedding = tf.get_variable('embedding',
                                  [FLAGS.vocab_size, hparams.gen_rnn_size])

  config = get_config()
  config.keep_prob = [hparams.dis_nas_keep_prob_0, hparams.dis_nas_keep_prob_1]
  configs.print_config(config)

  with tf.variable_scope('dis', reuse=reuse):
    # Neural architecture search cell.
    cell = custom_cell.Alien(config.hidden_size)

    if is_training:
      [h2h_masks, _, _,
       output_mask] = variational_dropout.generate_variational_dropout_masks(
           hparams, config.keep_prob)
    else:
      output_mask = None

    cell_dis = custom_cell.GenericMultiRNNCell([cell] * config.num_layers)
    state_dis = cell_dis.zero_state(FLAGS.batch_size, tf.float32)

    with tf.variable_scope('rnn') as vs:
      predictions = []
      if not FLAGS.dis_share_embedding:
        embedding = tf.get_variable('embedding',
                                    [FLAGS.vocab_size, hparams.dis_rnn_size])

      rnn_inputs = tf.nn.embedding_lookup(embedding, sequence)

      if is_training and FLAGS.keep_prob < 1:
        rnn_inputs = tf.nn.dropout(rnn_inputs, FLAGS.keep_prob)

      for t in xrange(FLAGS.sequence_length):
        if t > 0:
          tf.get_variable_scope().reuse_variables()

        rnn_in = rnn_inputs[:, t]

        if is_training:
          state_dis = list(state_dis)
          for layer_num, per_layer_state in enumerate(state_dis):
            per_layer_state = LSTMTuple(
                per_layer_state[0], per_layer_state[1] * h2h_masks[layer_num])
            state_dis[layer_num] = per_layer_state

        # RNN.
        rnn_out, state_dis = cell_dis(rnn_in, state_dis)

        if is_training:
          rnn_out = output_mask * rnn_out

        # Prediction is linear output for Discriminator.
        pred = tf.contrib.layers.linear(rnn_out, 1, scope=vs)

        predictions.append(pred)
  predictions = tf.stack(predictions, axis=1)
  return tf.squeeze(predictions, axis=2)